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Abstract 

In laser cutting of thick steel sheets, quality difference is observed between 

cut surfaces obtained with 1 m and 10 m laser beams. This paper investigates physical 

mechanisms for this interesting and important problem of the wavelength dependence. First, 

striation generation process is described, based on a 3D structure of melt flow on a kerf front, 

which was revealed for the first time by our recent experimental observations. Two fundamental 

processes are suggested to explain the difference in the cut surface quality: destabilization of the 

melt flow in the central part of the kerf front and downward displacement of discrete melt 

accumulations along the side parts of the front. Then each of the processes is analyzed using a 

simplified analytical model. The results show that in both processes, different angular 

dependence of the absorptivity of the laser beam can result in the quality difference. Finally we 

propose use of radial polarization to improve the quality with the 1 m wavelength. 
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I. Introduction 

 

Recent progress of high power and high brightness lasers has enabled high throughput and 

low cost operation in a number of laser material processing applications in industries. 

Meanwhile, laser cutting of thick-section steel with inert gas, one of the important applications, 

has so far failed to benefit from this advantage. The problem concerns striations which are 

created on cut surfaces during laser cutting process. For thickness typically over ~ 4 mm, 

roughness of cut surfaces obtained with a fiber or disc laser (L~ 1 m) is higher than that 

achieved with a conventional CO2 laser (L= 10.6 m).1-4 For example, Scintilla et al.4 

compared laser cutting of steel with disc and CO2 lasers using almost the same laser beam 

diameter and gas condition. For thicknesses of 5 mm and 8 mm, cut surface quality obtained 

with a disc laser was worse than the one obtained with a CO2 laser. Considering that the 

operating conditions were nearly the same, it seems reasonable to infer that the quality 

difference is attributed to the influence of the laser wavelength on the absorption process and 

more particularly, the Fresnel absorption. 

 

Whereas wavelength dependence of the Fresnel absorption law has been related to difference 

in achievable thickness, 5 very few investigations have been made on the mechanism of the 

difference in the cut surface quality. Poprawe and co-workers observed ripple formations on the 

kerf front with a 1 m beam but not with a 10 m beam,6,7 which they claim is the cause of the 

quality difference. This correlation between the ripples on the front and the striations on the 

sides is not so clear; striations appear even in the case of CO2 laser cutting where the ripple 

formations were not observed. Petring et al. 8 has proposed another point of view that multi-

reflections, which occur within the kerf in laser cutting with a 1 m beam, can destabilize lower 

part of kerf sides. According to experimental results, however, the degradation of the surface 

roughness in the case of a 1 m beam starts at 1 ~ 2 mm below the top surface,1-4  where the 

laser beam absorption from multi-reflected components is not supposed to be important. 
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Consequently, multi-reflections cannot be the main mechanism. 

 

One of the problems which have hindered a proper understanding of this phenomenon is that, 

before discussing details of the wavelength effect, we have not understood properly the 

mechanism of the striation generation process itself. The situation has been changed, however, 

by direct experimental observations of the process. Yudin and co-workers observed 

hydrodynamics on kerf sides during laser cutting of Rose’s alloy9 and mild steel10 by 

visualization through a glass plate. They confirmed that striations are developed by intermittent 

downward displacement of melt accumulations along kerf sides. In order to clarify the origin of 

this intermittent generation of melt accumulations, we observed melt flow dynamics from above 

the kerf front in laser cutting of steel.11 The results indicated an important role of surface tension, 

which tends to hold melt accumulations at the top of the kerf side counteracting to assist gas 

force. Another important phenomenon was found in an intermediate velocity range: melt flow in 

central part of the kerf front is continuous whereas flow in side parts is discontinuous, and it is 

this unstable side flow that leads to striation generation. This result indicates the importance of 

distinction between central and side flows when one considers the influence of the melt flow 

stability on the striation generation. 

 

The object of this paper is to discuss theoretical aspects of the quality difference observed 

between the two wavelengths in thick section laser cutting of steel. In the following, we first 

describe striation generation process suggested from our recent experimental observations, and 

then discuss possible mechanisms of the quality difference. 

 

II. Mechanism of striation generation 

 

Figure 1 schematically shows melt flow on a kerf front and striation generation process. We 

pay attention to the three-dimensional structure of the melt flow on the kerf front, considering 
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the results of our experimental observation,11 which revealed the importance of the distinction 

of the flows in the central and side parts. This point is contrasted with the existing models (for 

example, Refs. 6 and 7), where only processes in the central plane of cutting were described. 

 

First of all, it should be noted that, it is the discontinuity of the resolidification process on the 

kerf side that leads to striations, as was already pointed out by Yudin and Kovalev.9 In the top 

part of the kerf, the discontinuity comes from discrete melt accumulations (MAs hereafter) that 

are generated periodically and displaced downwards along the kerf sides. Our observation 

showed that the MAs are created one by one along an arc EQ in Fig. 1 and displaced 

downwards almost vertically along the line EP. This line corresponds to the limit of overlapped 

region of laser beam and the kerf side. As was discussed in Ref. 11, the periodical creation of 

the MAs is caused by surface tension that tends to retain the MAs at the top surface, and the 

period of the creation of MAs is determined by force balance between the surface tension and 

assist gas force. 

a
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FIG. 1. Schematic of the striation generation process. (MA: Melt accumulation, CF: Central 

flow, LB: laser beam) 
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In lower part of the kerf front, melt flow in the central part can interfere with the side flow as 

shown in Fig. 1. For example, our observation revealed that in an intermediate velocity region 

(V = 2 ~ 6 m/min), the MAs, which slide down periodically along the kerf side, are absorbed 

into continuous central flow11. Below this intersection point, the striations left on the kerf side 

are mainly determined by the stability of the central flow. The possibility of the interception of 

MAs by the central flow depends on inclination angle a of the kerf front, downward velocity u 

of MAs, and so on. When cutting velocity Vc is increased, for instance, a increases and thus the 

interception is more likely to occur. 

 

Now let us consider the regime of thick section cutting with a 1 m laser beam, which is the 

main interest of the present study. In this regime, the central part of the front is expected to be 

discontinuous, because a is so small. We experimentally investigated the stability of the central 

part using a 1 m disc laser beam12 and the results showed that, when a < 13 degrees, humps 

appear in the central part. (Throughout this paper, the term hump is used for a MA that appears 

in the central part of the kerf front in order to distinguish the one from a MA in the side part, 

which is called as such.) In general, the maximum value of a can be estimated from (d/h) (h: 

thickness of specimen, d: laser beam diameter).5 For a typical condition of thick section cutting 

(h ≥ 4 mm, d ~ 200 m), one obtains a ≲ 3 degrees. The angle is so small that the central part is 

likely to be unstable. This regime of humps for thick section cutting was reported also in Ref. 6. 

The humps in the central part can affect striations, since melt flow on the whole kerf front is 

discontinuous and the humps in the central part can disturb downward movement of MAs on the 

side through interaction caused by surface tension and can end up in the increase of surface 

roughness on the kerf sides. This kind of interaction between the central and side flows was 

observed in our experiments for a low velocity range (V < 2 m/min).11 

 

Then what is the reason of the quality difference between the 1 m and 10 m wavelengths? 
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The above discussion leads us to propose two fundamental processes: the destabilization of the 

melt flow in the central part, which can disturb the process of downward displacement of MAs 

and the downward displacement itself, which directly results in striation generation. Each of 

these two processes is examined in the following. Although there are many parameters that can 

alter the characteristics of the two processes, we focus on the influences of different 

wavelengths to clarify the principal mechanism that leads to the quality difference. 

 

III. Stability of melt flow in the central part of the kerf front 

 

    First we consider the wavelength dependence of the stability of the melt flow in the central 

part of the kerf front. The interest of the problem is not limited to the quality problem related to 

cutting applications. For example, in keyhole laser welding, it is well known that more spatters 

are generated with a 1 m laser beam than with a 10 m beam. This may be caused by strong 

metal vapor jet which is emitted from humps on the keyhole front wall. 

 

In spite of its importance, the wavelength dependence of the stability of a cut front or a 

keyhole front has been scarcely investigated. Koch et al. compared evolutions of keyholes for 

the two wavelengths with a numerical simulation.13 The keyhole front was found to be stable for 

a 10 m beam but unstable for a 1 m beam, by changing only the input data of the Fresnel 

absorption formula. In these simulations, however, constant values of 0.1 and 0.4 were added to 

the absorption formula for 1 m and 10 m beams, respectively. The validity of this operation is 

not obvious. Poprawe and co-workers mathematically analyzed the melt film stability.6,7 They 

found a parameter that measures the degree of the stability. According to the parameter, the 

system is more stable as     sinsin  A  becomes small. Here A is the absorptivity, which 

depends on the local inclination angle a of the front. Using the Fresnel absorption formulae, 

however, it is easy to show that this derivative term is larger for the 10 m wavelength than for 

the 1 m in the range of a < 3 degrees, which applies to thick section cutting. It appears that the 
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proposed stability parameter does not correctly represent the wavelength dependence 

experimentally observed. 

 

In the present study, the stability of the kerf front is investigated with a simple analytical 

model, which was used in the past for investigations of keyhole front profiles during laser 

welding.14-17 We analyze the kerf front in the central plane of cutting, which is shown in Fig. 

2(a). The front is represented by a set of chains and the dynamics of the front profile is 
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FIG. 2. The 2D model of kerf front profiles. Evolution of the profile depends on the sign of the 

stability function S(a) (see Eq.(7)), where a is the local inclination angle of the front. (a) When 

S(a) > 0,  a concave mode can develop: the node B  moves to the left from the line AC, and then 

the node D to the left from the line BC.  (b) When S(a) < 0, an inversed convex mode develops 

as from the line AC to AB’C and then to AB’D’C. 
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expressed by displacement of nodes that connect the chains. In the frame attached to the laser 

beam, displacement velocity of a chain is written as 

pcchain VVV  .                                                        (1) 

Here cV  is the cutting speed and pV is the local processing velocity that is expressed by 

    nAkIV Lp sin ,                                                 (2) 

where n  is the normal unit vector of the chain (The subscript adenotes the inclination angle 

of the chain.), IL is the laser beam intensity and k is a linear constant,16,17 which is determined 

from the energy balance. In fact, if we assume that the surface temperature of the kerf front is 

equal to the melting temperature Tm, it is easily shown from an energy balance equation that k-1 

≈ Cp(Tm-T0) + Lm within the present 2D approximation (: density, Cp: heat capacity, T0: 

ambient temperature, Lm: latent heat of melting). Using Eqs. (1) and (2), the velocity Vchain, 

which is defined as the component of chainV  normal to the chain, is calculated as 

  FkIVnVV Lcchainchain  cos ,                                       (3) 

where the function F is defined as 

     sinAF  ,                                                        (4) 

for the ease of formulation. By setting Vchain = 0, the angle aeq in the stationary condition is 

determined: 

 
L

c
eqeq kI

VA  tan .                                                     (5) 

Please note that this is a general equilibrium equation for a moving surface subjected to various 

combinations of IL and Vc. For example, this equation can also be applied to a keyhole front 

wall during welding process16,17 with slight modification of the coefficient k. Since A(a)tana 

increases monotonously with a, aeq is uniquely determined from Eq. (5) for a given 

combination of IL and Vc.  For simplicity, we assume that the laser intensity is constant at IL, and 

consequently kerf front is straight with a constant aeq. As shown in Eq. (5), aeq increases with 
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Vc. As far as the maximum value of aeq is concerned, it can be estimated independently from Eq. 

(5), geometrically by (d/h), which is typically smaller than 3 degrees for thick section cutting. 

The following discussion assumes a constant value of aeq (< 3 degrees). 

 

    Now let us discuss the stability of the kerf front profile. As shown in Fig. 2(a), we consider a 

small perturbation that displaces the node B to the left (= to the opposite direction of eqn ) from 

the straight line corresponding to aeq. The two chains AB and BC, which are assumed to have 

the same length, are tilted by (aeq - a) and (aeq + a), respectively. The velocity component of 

the node B perpendicular to the straight line AC can be evaluated from the average of the 

velocities of the two chains AB and BC, which are calculated in the same way as Eqs. (1) and 

(2): 

      
    

      eqLeqc
L

eqeq
L

eqc

eqLceqLcB

FkIVFFkI

FFkIV

nnFkIVnnFkIVV

eq

eqeqeqeq




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
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



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

















cos
2

coscos
2

cos

2
1

2
2

2

.          (6) 

In order to obtain the final expression, we have neglected terms of the forth order of (a)4 and 

higher. According to Eqs. (3)-(5), the second term in the right hand side of Eq. (6) is zero. 

Defining another function S: 

     



 FFS 



 2

2

 ,                                               (7) 

one obtains 

  2

2
  eq

L
B SkIV .                                                  (8) 

As will be shown in the following, S(ais the key parameter that governs destabilization and it 

determines a type of unstable modes that can appear. This “stability” function S(a) is shown in 

Fig. 3 for the two wavelengths of 1.06 m and 10.6 m. For this calculation, the complex 

refractive indices of iron at T = Tm were taken from Ref. 18 and these values are shown in Table 
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1. The random polarization was assumed in the calculation. The stability function S(a) takes a 

positive value at a= 0. It decreases with a and passes zero at some angle. We call this angle a0 

that satisfies S(a) = 0. a0 is 1.4 degrees for 10.6 m and 5.2 degrees for 1.06 m. For aa0, 

S(a) stays negative for both wavelengths. 

 

Table 1 The complex refractive indices (n + ik) used in the calculation of the stability function 

S(a)18 

Wavelength      n       k       

1.06 m         3.6        5 

10.6 m         14.8    15.5 

 

(a) The case of   0eqS   

First let us consider the case where   0eqS   (aeqa0). The equation (8) shows that 

0BV  in this case. Therefore, once the node B is displaced to the left, it gains velocity to the 

  

-10

-5

0

5

10

15

20

0 2 4 6 8 10

a (degrees)

S
( a

)

10.6 m

1.06 m

 

FIG. 3. The angular dependences of the stability function S(a) (defined by Eq. (7)) for the two 

wavelengths of 1.06 m and 10.6 m.
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left. Thus the perturbation is amplified. The relation 0BV  applies also to the case where the 

node B is moved to the right, which corresponds to the case of a < 0 for Fig. 2(a). The relation 

0BV  means that the node B is pulled back to the equilibrium position on the straight line AC. 

In this case (a < 0), the perturbation is suppressed. 

 

    When the node B is displaced to the left, the perturbation can be amplified more and more. To 

see this point, let us continue the same discussion as above for the two sets of sub-chains BD-

DC, and AJ-JB. First, we consider the case where D and J are both on the straight segments BC 

and AB, respectively. The velocity component VD0 of the node D normal to the segment BC is 

written as 

 BCLBCcD FkIVV   cos0  .                                        (9) 

Since eqBC   , one obtains 00 DV from the relation 

      BCBCeqeqLc AAkIV  tantan  . The velocity component VJ0 of the node J along 

ABn  at the same moment is found to be positive, since eqAB   . This difference of the sign 

between VD0 and VJ0 represents initiation of downward transport of the perturbation of ABC



Now let us consider a small perturbation of a1 added to the segment BC. Then the velocity 

component VD normal to the segment BC is modified as 

      
  0

2
1

11

2

2
1

11

DBC
L

BCLcBCLcD

VSkI

nnFkIVnnFkIVV BCBCBCBC



 



 

. (10) 

We obtain the relation 00  DD VV . Therefore, once the point D is displaced by a small 

amount of distance to the left from the straight segment BC, the point can travel to the left faster 

than VD0. This makes the section BDC more bended with the segment DC more inclined. 

Therefore, the initial small perturbation of ABC, can be amplified while transported downwards. 

There appears a region like DC, where the local a becomes higher and higher. This process of 
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bending continues as far as S(a> 0, until the local angle a reaches a0 (S(a0) = 0). After this 

moment, there will only be the downward transport of the perturbation without further 

amplification. 

 

(b) The case of   0eqS    

Next we consider the case of   0eqS   (aeqa0). The same discussion as above leads us to 

conclude that the perturbation to the right as AB’C in Fig. 2(b) increases, since the velocity 

component VB’ of the point B’ along eqn is positive. The segment B’C tends to be bended 

further as B’D’C in Fig. 2 (b). The local inclination angle aof the segment D'C becomes 

smaller than aeqThe growth of the perturbation thus decreases the local aand it stops when 

areachesa. 

  

In summary, the above discussion shows that, whatever the initial equilibrium inclination 

angle aeq is, the kerf profile is inherently unstable (except the case where aeq is exactly equal to 

a0). When aeqa0,   0eqS   and the concave mode as in Fig. 2(a) develops with the increase 

of a. On the other hand, when aeqa0,   0eqS   and the convex mode is amplified with the 

decrease of a (Fig. 2(b)). For both cases, the development of the perturbation is terminated 

when the local abecomes equal to a0. It might be surprising that the kerf front is only stable 

when local a is exactly equal to a0. It seems that this result is caused partly by simplifications 

used in this model. For example, consideration of surface tension will add a damping effect 

against the perturbations and should enlarge a stable region of a around a0. 

 

In spite of the simplified assumptions, our model allows us to discuss the interesting point of 

the wavelength dependence of the stability of the kerf profile as follows. We focus on the low 

aeq condition for thick section cutting (typically when aeq < 3 degrees). 
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(i) The case of 10 m 

In the case of 10.6 m, S(a) changes its sign at a1.4 degrees. According to the above 

discussion, when aeq < 1.4 degrees, S(a) > 0, so the concave mode develops. There appears a 

region where a > aeq, but the increase of the local a stops at a1.4 degrees. When 1.4 < aeq < 

3 degrees, on the other hand, S(a) < 0. The convex mode appears in this case and the 

development ceases if the local a is decreased to the same value of 1.4 degrees. In any case, the 

difference of the angle between a and aeq is small, and thus the corresponding perturbation 

along the kerf front is small and cannot grow so large. 

 

(ii) The case of 1 m 

For 1.06 m, S(a) becomes zero at a5.2 degrees and is always positive for aeq < 3 

degrees. The concave mode appears and this continues to develop until the local areaches a. 

Because of the larger value of a, the profile is perturbed much more strongly than the case of 

10.6 m. This is considered to be the fundamental reason why the front profile in the case of the 

1 m wavelength tends to be less stable than 10 m. It can be added here that a is about the 

half of the Brewster angle for each wavelength, so the stability is closely related to wavelength 

dependence of the Brewster angle. 

  

Although the present model predicts that the local inclination angle can be stagnated at 5.2 

degrees for 1 m, more perturbed profiles with much larger acan be observed experimentally. 

The proper description of this successive development after 5.2 degrees is left for a future work, 

but it seems possible that the initial perturbation developed up to 5.2 degrees can trigger larger 

deformation of the profile. Once a so-called shelf or step, where a is locally very high, comes 

out, strong drilling occurs on the shelf due to higher absorbed intensity. This localized drilling 

transports the shelf downwards. In the case of welding, strong metal vapor jet emitted from the 

shelf can destabilize melt pool dynamics. For the striation generation process in laser cutting, 
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localized melt on the shelf, which we call a hump, can disturb the dynamics of the downward 

displacement of MAs along the kerf sides. 

 

    A closer look at the above analysis shows that the perturbation is amplified due to the fact that 

bending is favorable in terms of energy efficiency. That is, when the straight line AC in Fig. 2(a) 

is bended, averaged absorptivity for the laser beam section A’C’ increases.  It is interesting to 

note that for 1 m this effect can also be observed in a larger scale, in the energy efficiency of 

the whole cutting process. Let us consider the absorptivity for a model profile for the hump 

regime shown in Fig. 4(b). The profile is composed of vertical walls and inclined parts of 

shelves. The laser beam is then irradiated only on the shelves, where local inclination angle ais 

much larger than aeq. According to the angular dependence of the absorptivity for 1 m shown 

in Fig. 4(a), the absorptivity always increases when ais increased from aeq that is situated in the 

range of aeq < 3 degrees. Consequently, when the unstable hump regime is established from the 

destabilization effect discussed above in the case of 1 m, the averaged absorptivity can be 

raised, compared with the case of straight profile with a constant inclination angle aeq. In fact, 
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FIG. 4. (a) The angular dependences of the absorptivity A(a) for the two wavelengths of 1.06 

m and 10.6 m at T = Tm.18 (b) A model kerf profile in the case of the regime of humps. 
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the increase of the effective absorptivity has already been suggested experimentally: Wandera et 

al.19 reported that less laser power is required to cut 10 mm thick stainless steel with a fiber laser 

than with a CO2 laser for the same cutting velocity. Scintilla et al.4,20 investigated the maximum 

cutting speed to cut samples of different thicknesses for the two wavelengths, and confirmed 

that the maximum cutting speed reached by a disc laser is higher than a CO2 laser even for 8 

mm thick steel. Also one must note that the averaged values of aeq for these thicknesses (10 mm, 

8 mm) are so small that A(aeq) for the averaged angle aeq is higher for CO2 laser (see Fig. 4(a)). 

 

     Finally it should be noted that there is another mechanism for the generation of humps. As 

discussed in Refs. 11 and 21, when aeq is small, humps are generated periodically from the 

surface due to combined effect of surface tension and thermal instability. Obviously this 

mechanism does not depend on the wavelength. Another important difference is that, according 

to this mechanism, humps are generated only from the surface, whereas humps can emerge 

anywhere on the kerf front in the case of the destabilization of the front profile discussed above. 

 

IV. Downward displacement of melt accumulations along kerf sides 

 

Let us discuss the influence of the laser beam wavelength on the dynamics of the downward 

displacement of MAs along kerf sides and on the roughness of striations. As discussed in Ref. 

11, the surface roughness is created after the displacement of MAs, which are generated 

periodically at the top part of the kerf side. The striation wavelength , which corresponds to the 

width of each of the MAs along the cutting direction, is determined from a balance between 

force exerted by assist gas and surface tension that retains the accumulations.  The downward 

displacement is almost vertical and the MAs continue to receive laser energy during their 

downward displacement. Each MA transfers a part of this energy to the solid part. As a result, 

local melting of the solid part in the contact area creates a stripe of striations. 
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 In thick section cutting, inclination angle of kerf sides is very small, generally less than the 

angle aeq of the front. For such a small angle, the absorptivity of the laser beam on the MAs 

along the sides is higher for 10 m than for 1 m (see Fig. 4(a)). The MAs in the case of CO 

laser are thus expected to have higher temperature and consequently lower viscosity. Resultant 

higher displacement velocity of MAs may reduce the total energy consumed for the local 

melting during the period of the downward displacement and thus leads to lower surface 

roughness. This aspect of the temperature dependence of the melt ejection has been pointed out 

in the past, but the regime of discrete MAs on the kerf side has never been considered. In the 

following, we examine this rather complex problem with a simplified analytical model and 

discuss the impact of the temperature of MAs on the final quality of surface roughness. 

 

The model that is investigated is shown in Fig. 5. For simplicity we assume that the stationary 
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FIG. 5. The 2D model of the striation generation process. The solid part is melted due to heat 

transfer from the melt accumulation (MA) sliding down along the kerf side wall. 
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condition is reached. A MA slides down along the kerf side wall with a constant velocity u. It 

receives laser intensity and transfers a part of the energy to the solid part. As a result, the solid 

part is eroded by the depth of Rz. The prediction of Rz is the final goal of this analysis. The MA 

is assumed to be a deformed droplet, whose characteristic width, thickness and length are given 

by ,  and l, respectively. The width  corresponds to the striation wavelength, and  represents 

thickness of the MA at the surface, which is also related to the force balance between the surface 

tension and assist gas. According to our observation,11 it seems reasonable to assume that  and 

 are constant. We regard the problem as 2D, reducing the dimension along . The length l of 

MA increases during the downward displacement, since gradual melting of solid part provides 

additional volume to MA. Modeling of this complex hydrodynamics is beyond the scope of this 

work, however, and we assume a constant value of l. 

 

First let us describe the temperature field in the solid part. Before the passage of a MA, the 

solid part is already pre-heated by heat conduction from the traveling laser beam and the surface 

temperature reaches Tm, the melting temperature. The initial temperature field inside the solid 

has the penetration depth y, which is approximated by y ≈ rk(Pe/2)-0.7 (rk: kerf radius, Pe: 

Peclet number(= rkVC/)),11 where the y axis is taken perpendicularly to the solid-liquid 

interface. The temperature field is approximated by a linear distribution as the bold line in Fig. 6. 
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FIG. 6. Temperature field inside the solid. 
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Now we examine energy balances around a MA under the condition that the equilibrium is 

established. The temperature T of the MA is represented by the value at the center of the MA. 

The first equation comes from the heat flux boundary condition at the surface of the MA: 

 
2

sin


 m
L

TTKAI 
 ,                                                    (11)  

where IL is the laser intensity,  is the inclination angle of the MA’s surface, and K is the heat 

conductivity. Please note that the increase of the absorbed intensity in the left hand side results 

in the temperature increase of the MA. The second equation concerns the Stefan condition along 

the solid-liquid interface. 

wf
m qvLTTK 





2

,                                                    (12) 

where v is the velocity of the melting front into the solid part, and qw is the heat flux lost into 

the solid. Considering that the melting front advances by Rz during the solid-liquid interaction 

over the distance l, v can be expressed as 

t
Rv z


    ,                                                              (13) 

where t ≈ (l/u) is the interaction time. 

 

The heat flux qw is determined from the temperature gradient in the solid part. The bold line 

in Fig. 6 is the approximate temperature distribution along the line x = x0 shown in Fig. 5, which 

corresponds to the moment when the MA arrives. During the interaction time t with the MA, 

heat flux from the MA penetrates into the solid and the solid-liquid interface moves into the 

solid part by Rz. Considering that the penetration depth of temperature diffusion can be 

approximated with ~(t)1/2, the temperature field after t, along the line x = x0 - l in Fig. 5, can 

be approximated as the dotted line in Fig. 6. Please note that the temperature field outside the 

thickness ~(t)1/2 is not modified in this approximation. One can then calculate the heat flux qw 

at the solid-liquid interface from the temperature gradient: 
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  .                                            (14) 

qw is increased by the factor (1-Rz(u/l)1/2)-1, compared with the heat flux (≈ K(Tm-T0)/y) 

before the arrival of the MA. When the interaction time t is smaller, that is, when the length l 

of the MA is shorter or the velocity u is larger, qw becomes larger. From Eqs. (12) and (13), one 

can see that v and Rz become smaller, which means that the melting is restrained. 

 

Finally we consider kinetics of the MA from a force balance equation. As already mentioned, 

higher T leads to lower viscosity  and higher u. In order to estimate the order of u under the 

shear stress applied on the surface of MA from assist gas, we refer to a result of an experimental 

study on droplets sliding down along an inclined surface.22 In this study, a rather general law 

was found: Ca ~ AmBo, where Am (≈ 0.005 ± 0.002) is a constant, Ca = u/ is the capillary 

number and Bo = gsinV2/3/is the Bond number (: �surface tension coefficient; 

inclination angle of the surface; V: volume of the droplet). Replacing the force term 

(Vgsin) with g(l), which represents the shear force by assist-gas in our case, we obtain 


 lA

u gm .                                                            (15) 

It can be mentioned here that dimensionally Eq. (15) is equivalent to the well-known Newton 

type viscous friction stress that works on the liquid-solid surface, although in the present case, 

the droplet slips on the solid surface with the velocity u. The temperature dependence of the 

viscosity  is expressed by the Arrhenius law: 









RT
Eaexp0  ,                                                   (16) 

where Ea and R are the activation energy and the gas constant, respectively. 
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With non-dimensional parameters  zk RlLrLL ,, , CVuu  , 

   0TTTTT mm  ,   CmpL VTTCII 0  , ma RTE , Eqs. (11), (12) and (15) are 

rewritten as 
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where 











m

a
m RT

Eexp0                                                      (20) 

is the viscosity at the melting temperature. The non-dimensional parameter b  (Amgrk/mVc) is 

about 2.5 ± 1, if we take the values of g  500 Pa, m ≈ 5 x 10-3 (Pa·s), Vc = 20 (mm/s), rk = 100 

(m) and Am ≈ 0.005 ± 0.002. Finally we obtain 













T

Tlbu
1

exp 
.                                                    (21) 

 ma RTE  is about 3 for steel. 

 

    Figure 7 shows the dependencies of Rz’ and u’ on T’ calculated from Eqs. (18) and (21) with 

’ = 0.1, l’ = 1.0 and b = 2.5. The curves are shown also for b = 1.5 and 3.5 to see the influence 

from the variation of Am. It is confirmed that these curves have the same tendency as the case of 

b = 2.5, so we discuss only this case in the following. When T’< 0.23 (T < 2.2 x 103 K), Rz’ 

increases with the increase of T’. In this temperature region, u’ does not increase strongly with 

T’, whereas the heat flux through the solid-liquid interface does increases with T’. This 
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increment of the heat flux is consumed to melt more volume per unit time, which is proportional 

to (u’Rz’), and thus Rz’ is increased. As u’ and Rz’ increase, however, the heat conduction loss to 

the solid part (the second term in the right hand side of Eq. (18)) begins to grow up and the heat 

flux that can be used to melt the solid is decreased. Consequently Rz’ takes the maximum at T’= 

0.23. After this point, Rz’ decreases with T’ mainly due to the reduction of the viscosity with the 

increase of T’. For this temperature region, the present simplified model predicts that Rz 

decreases with T’, and this can explain the worse quality of cut surfaces obtained with a 1 m 

beam. 

 

Considering striking difference observed between 1 m and 10 m, however, it seems that 

the difference predicted by this model is underestimated. Moreover, in reality, the roughness 

might decrease with the increase of temperature also in the range of T’< 0.23. One way to 

improve the present model is to take into account the evolution of the geometry of the MA and 

its effect on the kinetics of the MA. This point will be investigated in a future work. 

 

V. Summary and conclusion 

 

In order to clarify the mechanisms of the quality difference observed in laser cutting of thick 

section steel with 1 m and 10 m laser beams, we investigated the wavelength dependence of 
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FIG. 7. Calculated Rz’ and u’ as a function of T’ for different values of b. 
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the two fundamental processes. 

 

First we analyzed the destabilization of the melt flow in the central part of the kerf front, 

which can disturb the dynamics of displacement of MAs (melt accumulations). It is concluded 

that when the stability function S(aeq) is positive (negative) the concave (convex) mode of 

perturbation appears and develops. For both modes, the growth of the perturbations stops when 

the local inclination angle reaches a0, which satisfies S(a0) = 0. In the case of thick section 

cutting (aeq < 3 degrees), the stopping angle a0 for 1 m (5.2 degrees) is far away from the 

mean angle aeq of the cutting front, whereas a0 for 10 m (1.4 degrees) is very close to the 

operating range of aeq.   This explains why the cutting front for a 1 m laser beam is perturbed 

much more strongly than that for a 10 m beam. 

 

Then we investigated the dynamics of downward displacement of MAs along kerf sides, 

which is more directly related to the development of striations. Using a simple analytical model, 

it was shown that an increase of the absorbed intensity on the MAs can increase their 

temperature and decrease the surface roughness. This result indicates that the lower absorptivity 

for very small inclination angle of the kerf sides can be the reason for the worse quality obtained 

for thick section cutting with a 1 m laser beam. 

 

    From these considerations, we finally propose that a possible solution to improve the quality 

for 1 m is to utilize lasers with the radial polarization. The absorptivity on the kerf side can be 

increased because the radial polarization works as the favorable p-polarization on the side. To 

the best of our knowledge, the interest of the use of the radial polarization on the cut surface 

quality has never been pointed out, while relevant theoretical discussions have focused on 

improvement of capacity of the cutting process in terms of cut thickness or cutting velocity.23,24 

Please note that the cutting capacity is determined mainly by the absorptivity on the central part 

of the kerf front and not by the absorptivity on the side, which is the present interest. 
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Experimentally, for CO2 laser cutting of steel, it has already been reported that the surface 

roughness can be improved with the use of radial polarization compared to the ordinary circular 

polarization.25 For the 1 m wavelength, the problem of the destabilization of the central flow 

may not be completely solved with the radial polarization, because the stoppingangle a0 is still 

kept high at 4.8 degrees even for the absorption of the p-polarization. Nevertheless, it is the 

dynamics of MAs that is directly related to the final surface roughness. Therefore, with the 

radial polarization, a better absorption of the laser beam on kerf sides should improve the 

quality to some extent. The authors are willing to see the experimental verifications in near 

future. 
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