666 research outputs found

    Testing the Metal of Late-Type Kepler Planet Hosts with Iron-Clad Methods

    Get PDF
    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6sigma confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 of the solar value. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of core accretion, rather than insufficient solids to form a core.Comment: 9 pages, 5 figures. Accepted to Ap

    M Dwarf Flares from Time-Resolved SDSS Spectra

    Full text link
    We have identified 63 flares on M dwarfs from the individual component spectra in the Sloan Digital Sky Survey using a novel measurement of emission line strength called the Flare Line Index. Each of the ~38,000 M dwarfs in the SDSS low mass star spectroscopic sample of West et al. was observed several times (usually 3-5) in exposures that were typically 9-25 minutes in duration. Our criteria allowed us to identify flares that exhibit very strong H-alpha and H-beta emission line strength and/or significant variability in those lines throughout the course of the exposures. The flares we identified have characteristics consistent with flares observed by classical spectroscopic monitoring. The flare duty cycle for the objects in our sample is found to increase from 0.02% for early M dwarfs to 3% for late M dwarfs. We find that the flare duty cycle is larger in the population near the Galactic plane and that the flare stars are more spatially restricted than the magnetically active but non-flaring stars. This suggests that flare frequency may be related to stellar age (younger stars are more likely to flare) and that the flare stars are younger than the mean active population.Comment: 38 pages, 10 figures, Accepted for publication in AJ. Note that Figure 6 is shown here at lower resolutio

    Prospecting in late-type dwarfs: a calibration of infrared and visible spectroscopic metallicities of late-K and M dwarfs spanning 1.5 dex

    Full text link
    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late-K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to < 0.10 dex using either visible, J, H, or K band spectra. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H]< +0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the zeta parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and zeta does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H band are quite reliable for stars with [Fe/H] > -0.5, but are less useful for more metal-poor stars.Comment: 16 pages, 6 figures, two electronic tables. Published in the Astronomical Journal. July 2013 update: corrected a typo in the H2O-J band definition, clarified calibration assumes equivalent widths in Angstroms. May 2014 update: IDL program for calculating metallicities is now on github (https://github.com/awmann/metal

    Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout

    Full text link
    We introduce and experimentally characterize a superconducting single-sideband modulator compatible with cryogenic microwave circuits, and propose its use for frequency domain multiplexing of superconducting qubit readout. The monolithic single-quadrature modulators that comprise the device are formed with purely reactive elements (capacitors and Josephson junction inductors) and require no microwave-frequency control tones. Microwave signals in the 4 to 8 GHz band, with power up to -85 dBm, are converted up or down in frequency by as much as 120 MHz. Spurious harmonics in the device can be suppressed by up to 25 dB for select probe and modulation frequencies.Comment: 5 page main text, 6 page supplementary informatio

    XMM-Newton Observations of the Cataclysmic Variable GW Lib

    Full text link
    XMM-Newton observations of the accreting, pulsating white dwarf in the quiescent dwarf nova GW Librae were conducted to determine if the non-radial pulsations present in previous UV and optical data affect the X-ray emission. The non-radial pulsations are evident in the simultaneous Optical Monitor data but are not detected in X-ray with an upper limit on the pulsation amplitude of 0.092 mags. The best fits to the X-ray spectrum are with a low temperature diffuse gas model or a multi-temperature cooling flow model, with a strong OVIII line, similar to other short period dwarf novae, but with a lower temperature range than evident in normal short period dwarf novae. The lack of pulsations and the spectrum likely indicate that the boundary layer does not extend to the surface of the white dwarf.Comment: 16 pages, 4 figures; accepted for publication in A

    White Light Flare Continuum Observations with ULTRACAM

    Full text link
    We present sub-second, continuous-coverage photometry of three flares on the dM3.5e star, EQ Peg A, using custom continuum filters with WHT/ULTRACAM. These data provide a new view of flare continuum emission, with each flare exhibiting a very distinct light curve morphology. The spectral shape of flare emission for the two large-amplitude flares is compared with synthetic ULTRACAM measurements taken from the spectra during the large 'megaflare' event on a similar type flare star. The white light shape during the impulsive phase of the EQ Peg flares is consistent with the range of colors derived from the megaflare continuum, which is known to contain a Hydrogen recombination component and compact, blackbody-like components. Tentative evidence in the ULTRACAM photometry is found for an anti-correlation between the emission of these components.Comment: 8 pages, 3 figures. Proceedings of the 16th Workshop on Cool Stars, Stellar Systems, and the Sun (PASP conference series, in press

    XMM-Newton and Optical Observations of Cataclysmic Variables from SDSS

    Full text link
    We report on XMM-Newton and optical results for 6 cataclysmic variables that were selected from Sloan Digital Sky Survey spectra because they showed strong HeII emission lines, indicative of being candidates for containing white dwarfs with strong magnetic fields. While high X-ray background rates prevented optimum results, we are able to confirm SDSSJ233325.92+152222.1 as an intermediate polar from its strong pulse signature at 21 min and its obscured hard X-ray spectrum. Ground-based circular polarization and photometric observations were also able to confirm SDSSJ142256.31-022108.1 as a polar with a period near 4 hr. Photometry of SDSSJ083751.00+383012.5 and SDSSJ093214.82+495054.7 solidifies the orbital period of the former as 3.18 hrs and confirms the latter as a high inclination system with deep eclipses.Comment: 31 pages, 14 figures. Accepted for publication in the Astronomical Journa

    The Implications of M Dwarf Flares on the Detection and Characterization of Exoplanets at Infrared Wavelengths

    Full text link
    We present the results of an observational campaign which obtained high time cadence, high precision, simultaneous optical and IR photometric observations of three M dwarf flare stars for 47 hours. The campaign was designed to characterize the behavior of energetic flare events, which routinely occur on M dwarfs, at IR wavelengths to milli-magnitude precision, and quantify to what extent such events might influence current and future efforts to detect and characterize extrasolar planets surrounding these stars. We detected and characterized four highly energetic optical flares having U-band total energies of ~7.8x10^30 to ~1.3x10^32 ergs, and found no corresponding response in the J, H, or Ks bandpasses at the precision of our data. For active dM3e stars, we find that a ~1.3x10^32 erg U-band flare (delta Umax ~1.5 mag) will induce <8.3 (J), <8.5 (H), and <11.7 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 18 hours. For active dM4.5e stars, we find that a ~5.1x10^31 erg U-band flare (delta Umax ~1.6 mag) will induce <7.8 (J), <8.8 (H), and <5.1 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 10 hours. No evidence of stellar variability not associated with discrete flare events was observed at the level of ~3.9 milli-mags over 1 hour time-scales and at the level of ~5.6 milli-mags over 7.5 hour time-scales. We therefore demonstrate that most M dwarf stellar activity and flares will not influence IR detection and characterization studies of M dwarf exoplanets above the level of ~5-11 milli-mags, depending on the filter and spectral type. We speculate that the most energetic megaflares on M dwarfs, which occur at rates of once per month, are likely to be easily detected in IR observations with sensitivity of tens of milli-mags.Comment: Accepted in Astronomical Journal, 17 pages, 6 figure
    corecore