23 research outputs found

    Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma

    Get PDF
    Many gene products exhibit great structural heterogeneity because of an array of modifications. These modifications are not directly encoded in the genomic template but often affect the functionality of proteins. Protein glycosylation plays a vital role in proper protein functions. However, the analysis of glycoproteins has been challenging compared with other protein modifications, such as phosphorylation. Here, we perform an integrated proteomic and glycoproteomic analysis of 83 prospectively collected high-grade serous ovarian carcinoma (HGSC) and 23 non-tumor tissues. Integration of the expression data from global proteomics and glycoproteomics reveals tumor-specific glycosylation, uncovers different glycosylation associated with three tumor clusters, and identifies glycosylation enzymes that were correlated with the altered glycosylation. In addition to providing a valuable resource, these results provide insights into the potential roles of glycosylation in the pathogenesis of HGSC, with the possibility of distinguishing pathological outcomes of ovarian tumors from non-tumors, as well as classifying tumor clusters

    Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy

    Get PDF
    The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy

    The major outer membrane protein of Haemophilus ducreyi consists of two OmpA homologs.

    No full text
    The major outer membrane protein (MOMP) of Haemophilus ducreyi is an OmpA homolog that migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels as three species with apparent molecular weights ranging from 37,000 to 43,000. Monoclonal antibodies directed against this macromolecule were used to identify recombinant clones containing fragments of the gene encoding this protein. Nucleotide sequence analysis of these fragments confirmed that the MOMP encoded by the intact gene (momp) was a member of the OmpA family of outer membrane proteins. Construction of an isogenic H. ducreyi mutant unable to express the MOMP led to the discovery of a second outer membrane protein which migrated at the same rate on SDS-PAGE gels as the MOMP. N-terminal amino acid sequence analysis of this second protein revealed that its N terminus was nearly identical to that of the MOMP and also had homology with members of the OmpA family. Nucleotide sequence analysis of the region downstream from the momp gene revealed the presence of a partial open reading frame encoding a predicted OmpA-like protein. A modification of anchored PCR technology was used to obtain the nucleotide sequence of this downstream gene which was shown to encode a second OmpA homolog (OmpA2). The N-terminal amino acid sequence of OmpA2 was identical to that of the OmpA-like protein detected in the momp mutant. The H. ducreyi MOMP and OmpA2 proteins, which comigrated on SDS-PAGE gels and which were encoded by the tandem arranged momp and ompA2 genes, were 72% identical

    Transcription of Candidate Virulence Genes of Haemophilus ducreyi during Infection of Human Volunteers

    No full text
    Haemophilus ducreyi expresses several putative virulence factors in vitro. Isogenic mutant-to-parent comparisons have been performed in a human model of experimental infection to examine whether specific gene products are involved in pathogenesis. Several mutants (momp, ftpA, losB, lst, cdtC, and hhdB) were as virulent as the parent in the human model, suggesting that their gene products did not play a major role in pustule formation. However, we could not exclude the possibility that the gene of interest was not expressed during the initial stages of infection. Biopsies of pustules obtained from volunteers infected with H. ducreyi were subjected to reverse transcription-PCR. Transcripts corresponding to momp, ftpA, losB, lst, cdtB, and hhdA were expressed in vivo. In addition, transcripts for other putative virulence determinants such as ompA2, tdhA, lspA1, and lspA2 were detected in the biopsies. These results indicate that although several candidate virulence determinants are expressed during experimental infection, they do not have a major role in the initial stages of pathogenesis

    Haemophilus ducreyi Associates with Phagocytes, Collagen, and Fibrin and Remains Extracellular throughout Infection of Human Volunteers

    No full text
    In a previous study, Haemophilus ducreyi was found in the pustule and dermis of samples obtained at the clinical end point in the human model of infection. To understand the kinetics of localization, we examined infected sites at 0, 24, and 48 h after inoculation and at the clinical end point. Immediately after inoculation, bacteria were found predominantly in the dermis but also in the epidermis. Few bacteria were detectable at 24 h; however, by 48 h, bacteria were readily seen in the pustule and dermis. H. ducreyi was associated with polymorphonuclear leukocytes and macrophages in the pustule and at its base, but was not associated with T cells, Langerhans' cells, or fibroblasts. H. ducreyi colocalized with collagen and fibrin but not laminin or fibronectin. Association with phagocytes, collagen, and fibrin was seen as early as 48 h and persisted at the pustular stage of disease. Optical sectioning by confocal microscopy and transmission electron microscopy both failed to demonstrate intracellular H. ducreyi. These data identify collagen and fibrin as potentially important targets of adherence in vivo and strongly suggest that H. ducreyi remains extracellular throughout infection and survives by resisting phagocytic killing in vivo
    corecore