
Resource
Proteogenomic Landscape of Breast Cancer
Tumorigenesis and Targeted Therapy
Graphical Abstract
Highlights
d Comprehensive proteogenomics resource from

prospectively collected breast tumors

d Proteogenomics defines ERBB2 and Rb status with clinical

implications

d Acetylproteome profiling yields insights into subtype-

specific cancer metabolism

d Immune profiling nominates subsets of luminal tumors for

immune therapy
Krug et al., 2020, Cell 183, 1436–1456
November 25, 2020 ª 2020 The Authors. Published by Elsevier In
https://doi.org/10.1016/j.cell.2020.10.036
Authors

Karsten Krug, Eric J. Jaehnig,

Shankha Satpathy, ..., Matthew J. Ellis,

Michael A. Gillette, Clinical Proteomic

Tumor Analysis Consortium

Correspondence
manidr@broadinstitute.org (D.R.M.),
scarr@broad.mit.edu (S.A.C.),
mjellis@bcm.edu (M.J.E.),
gillette@broadinstitute.org (M.A.G.)

In Brief

Breast cancer is a highly heterogeneous

disease with variable outcomes and

subtype-driven treatment approaches,

making precision medicine a

considerable challenge. Proteogenomic

analyses of 122 primary breast cancers

provide insights into clinically relevant

biology, including cell cycle

dysregulation, tumor immunogenicity,

aberrant metabolism, and heterogeneity

in therapeutic target expression.
c.
ll

mailto:manidr@broadinstitute.org
mailto:scarr@broad.mit.edu
mailto:mjellis@bcm.edu
mailto:gillette@broadinstitute.org
https://doi.org/10.1016/j.cell.2020.10.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2020.10.036&domain=pdf


OPEN ACCESS

ll
Resource

Proteogenomic Landscape of Breast Cancer
Tumorigenesis and Targeted Therapy
Karsten Krug,1,17 Eric J. Jaehnig,2,17 Shankha Satpathy,1,17 Lili Blumenberg,3,17 Alla Karpova,4,17 Meenakshi Anurag,2,17

George Miles,2 Philipp Mertins,1,5 Yifat Geffen,1 Lauren C. Tang,1,6 David I. Heiman,1 Song Cao,4 Yosef E. Maruvka,1

Jonathan T. Lei,2 Chen Huang,2 Ramani B. Kothadia,1 Antonio Colaprico,7 Chet Birger,1 Jarey Wang,8 Yongchao Dou,2

Bo Wen,2 Zhiao Shi,2 Yuxing Liao,2 Maciej Wiznerowicz,9,10 Matthew A. Wyczalkowski,4 Xi Steven Chen,7

Jacob J. Kennedy,11 Amanda G. Paulovich,11 Mathangi Thiagarajan,12 Christopher R. Kinsinger,13 Tara Hiltke,13

Emily S. Boja,13 Mehdi Mesri,13 Ana I. Robles,13 Henry Rodriguez,13 Thomas F. Westbrook,8 Li Ding,4 Gad Getz,1,14
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SUMMARY
The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing pro-
files tumorsmore comprehensively. Here this ‘‘proteogenomics’’ approachwas applied to 122 treatment-naive
primary breast cancers accrued to preserve post-translational modifications, including protein phosphoryla-
tion and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed anal-
ysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and
allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phospho-
proteomicsprofilesuncoverednovelassociationsbetween tumorsuppressor lossandtargetablekinases.Ace-
tylproteomeanalysis highlighted acetylationonkeynuclear proteins involved in theDNAdamage responseand
revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results under-
score the potential of proteogenomics for clinical investigation of breast cancer through more accurate anno-
tation of targetable pathways and biological features of this remarkably heterogeneous malignancy.
INTRODUCTION

The heterogeneity of breast cancer (BRCA) biology deeply chal-

lenges the drive for personalized treatment (Hyman et al., 2017).

Contemporary precision therapies target defects in DNA repair,
1436 Cell 183, 1436–1456, November 25, 2020 ª 2020 The Authors.
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activated protein kinases, the estrogen receptor (ER), and the

immune tumor microenvironment, often in combination (Telli

et al., 2019). Effective application of these approaches depends

on our ability to accurately profile tumors to identify individual

therapeutic vulnerabilities, but current methods in early-stage
Published by Elsevier Inc.
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BRCA, including mRNA-based prognostic tests, are inadequate

(Coates et al., 2015; Ross et al., 2007). Although more compre-

hensive genomic techniques are used in the advanced disease

setting, the interpretation and clinical implementation of the re-

sulting data have proved to be challenging, with many recurrent

mutations currently undruggable (Condorelli et al., 2019).

Furthermore, recently introduced treatments, such as CDK4/6

and immune checkpoint inhibitors, do not have robust predictive

biomarkers, which can lead to missed therapeutic opportunities

and overtreatment (O’Leary et al., 2016; Shindo et al., 2019).

Proteogenomics is an approach to tumor profiling that com-

bines next-generation DNA and RNA sequencing with mass

spectrometry-based proteomics to provide deep, unbiased

quantification of proteins and post-translational modifications

such as phosphorylation (Ruggles et al., 2017). The Clinical Pro-

teomic Tumor Analysis Consortium (CPTAC) seeks to perform

deep-scale proteogenomics profiling across multiple cancer

types. Our initial proteogenomics analysis of BRCA using resid-

ual samples from The Cancer Genome Atlas (TCGA) provided

proof of principle that proteogenomics represented an advance

in BRCA profiling (Mertins et al., 2016). However, the relatively

small number of TCGA samples with sufficient material for

deep proteomics represented different fragments from those

used for genomics, did not uniformly pass proteomics quality

assessment, and were not collected using protocols designed

to preserve post-translational modifications (Mertins et al.,

2014). Here we describe proteogenomics characterization of

the largest cohort to date of BRCA samples that were acquired

to minimize ischemic time, maximizing fidelity and reducing pre-

analytical variability. We offer the first comprehensive report of

the BRCA acetylome; present testable hypotheses regarding

therapeutic vulnerabilities, cancer biology, and advancement

of diagnostic standards; and provide an extensive resource to

stimulate further discovery.

RESULTS

Proteogenomic (PG) Characterization of Prospectively
Collected Breast Tumors
We prospectively collected treatment-naive primary tumors un-

der a stringent protocol that controlled tissue ischemia (Table S1)

to preserve post-translational modifications. Each tumor was

cryopulverized, and DNA, RNA, and protein were extracted

from the resulting single homogeneous sample (Figure S1A).

Tandem mass tag (TMT)-based isobaric labeling provided pre-
Figure 1. Proteogenomics (PG) Landscape of BRCA

(A) Schematic overview of PG data acquired for this cohort.

(B) Unsupervised multi-omics identified four molecular subtypes. Samples are o

(C) Kaplan-Meier curves showing survival outcome of PAM50 LumA samples in t

classifier to the NMF LumA-I (red) or LumB-I subtypes (green) compared with PA

(D) Heatmap showing the fraction of outlier values in each sample per protein. Prot

of less than 0.01 using BlackSheep. Kinases shown in boldwere detected as outlie

as well as NMF membership score. The left panel indicates whether an inhibit

Database). The right panels depict the abundance of the kinase activation loop a

(E) Heatmap showing q values from BlackSheep for enrichment of phosphorylatio

in parentheses indicate the number of samples in eachmutational subgroup. Kinas

that did not show enrichment (FDR R 0.01).

See also Figures S1–S3 and Tables S1, S2, S3, S4, and S5.
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cise relative quantification of proteins and phosphorylation and

acetylation sites following published CPTAC protocols (Mertins

et al., 2018; Figure 1A; Figures S1A and S1B). Stringent criteria

for protein identification and quantification resulted in high data

quality across 15 tumor TMT-plexes (Figures S1C–S1E) con-

nected by a common reference sample (STAR Methods).

Notably, all tumors passed post-data acquisition quality control

(QC) metrics for proteomics analysis (Figures S1F–S1H), an

improvement compared with our previous study (Mertins et al.,

2016). Longitudinal data quality and reproducibility were demon-

strated across several months of mass spectrometry data acqui-

sition by periodic analysis of full-process replicates of a prote-

omics comparative reference sample (CompRef; Mertins et al.,

2018) and by assessment of inter-plex common reference and

replicate sample reproducibility (Figures S1I–S1L). Across the

dataset, appropriate filtering (STAR Methods) yielded identifica-

tion of 29,647 somatic mutations, 23,692 gene-level copy num-

ber events, 23,121 gene transcripts, 10,107 proteins, 38,968

phosphorylation sites, and 9,869 acetylation sites (Figure 1A;

Table S2).

The PAM50 model was applied to RNA sequencing (RNA-seq)

data to determine representation of intrinsic subtypes (Parker

et al., 2009; Table 1). Somatic mutation profiles and subtype/so-

matic mutation associations were consistent with previous re-

ports (Cancer Genome Atlas Network, 2012). This BRCA cohort

therefore represented a wide range of established genomic and

transcriptomic features (Table 1; Figures S2A and S2B). Somatic

copy number alteration (SCNA) data were analyzed to detect

focal and arm-level events (Mermel et al., 2011; Figures S2C

and S2D) with confirmation of anticipated effects on mRNA

and protein abundance (Gillette et al., 2020; Mertins et al.,

2016; Zhang et al., 2014). Summaries of the results of these inte-

grative multi-omics analytic approaches are provided (Table 1;

Figures S2E–S2G; Table S3).

Non-negative Matrix Factorization-Based Multi-omics
Classification of BRCA
To explore intrinsic cohort structure using the full complement of

proteogenomics data, single-omic and multi-omics clustering

were performed for SCNA, mRNA, protein, and individual phos-

phosite and acetylation site abundance using non-negative ma-

trix factorization (NMF) (Lee and Seung, 1999, 2001). Although

NMF yielded between two and six clusters in single-omic ana-

lyses (Figure S3A), integrative multi-omics analysis converged

on four NMF clusters, with cluster membership scores indicating
rdered by cluster and membership score in decreasing order.

he METABRIC database that were assigned by a random forest mRNA-based

M50 LumB samples (blue). The p values were derived from log rank tests.

eins shown are kinases highly phosphorylated in each NMF cluster with an FDR

rs in the prior study. The top panel shows PAM50 andNMF cluster membership

or can be found for a given kinase using the DGIdb (Drug Gene Interaction

nd kinase substrate enrichment.

n outliers (y axis) in samples with the indicated mutated gene (x axis). Numbers

eswith an FDR of less than 0.01 are shown, and light gray cells indicate kinases



Table 1. Summary and Assessment of the Sample Cohort.

Tumor samples 134 prospectively collected tumors

125 tumors subjected to proteomic analysis

3 tumors excluded due to low quality RNA-seq data

122 tumors fully analyzed

PAM50 classification (Table S1A) HER2-enriched: 11.5%

Basal-like: 23.8%

LumA: 46.7%

LumB: 13.9%

Normal-like: 4.1%

SMGs landscape (MutSig2CV Q < 0.1;

Table S1A; Figure S2A

TP53 (43%), PIK3CA (33%), MAP3K1 (9%), GATA3 (7%), PTEN (7%), AKT1 (4%)

Mutational signature analysis (Figure S2B) W1: chewing_tobacco (COSMIC 29)

W2: aging (COSMIC 1)

W3/W7: BRCA_Hrdefect (COSMIC 3)

W4: UV (COSMIC 7)

W5: CT_APOBEC (COSMIC 2)

W7: MSI (COSMIC 6)

Notes: One sample classified as basal was characterized by an extraordinarily high

number of mutations comprising a dominant UV signature, raising the possibility

that it might have been a metastatic melanoma, although the BRAF mutation

present (F707I) was not pathognomonic.

SNCA landscape (GISTIC2 Q < 0.25)

(Figures S2C and S2D;

Table S3A)

Arm-level amplifications 1q, 3q, 8p, 8q,16p, 20p, 20q

Arm-level deletions: 4q, 8p, 13q, 14q, 15q, 16p, 16q, 17p, 17q, 18p, 18q, 19p,

19q, 22q

SCNA to protein/mRNA correlation (Figure S2E) Pairwise correlations of SCNAs with mRNA and protein abundances in cis (within a

locus) and in trans (across the genome) confirmed the characteristic trans effects

of 5q and 16q reported previously (Mertins et al., 2016).

LINCS CMAP analysis (Figure S2F; Table S3B) 21 candidate driver genes, located in chromosomes 1, 5q, 6p, 7q, 8q, 10p, 13q

and 16q.

Notes: Candidate driver genes differed from those reported previously (Mertins et al.,

2016), as expected, given a different technology platform for copy number data

generation and significant changes in the underlying LINCS database and calculation of

connectivity scores (STAR Methods).

mRNA-protein correlation (Figure S2G;

Table S3C)

Number of RNA-protein pairs (gene level): 9,108; median r: 0.41

Number of significant correlations (FDR < 0.01): 6,609; median r: 0.51

Proteogenomic events with MS/MS support

(Tables S3D

and S3E)

3,444 single amino acid variants:

238 somatic

3,206 germline

891 alternative splice forms
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the strength of association of each sample with a given cluster

(Figure 1B; Figures S3B and S3C; Table S4). Clusters designated

luminal A-inclusive (NMF LumA-I) and basal-inclusive (NMF

Basal-I) were almost entirely composed of tumors with the cor-

responding PAM50 assignments. Thus, these samples represent

the extremes of the BRCA intrinsic subtype classification (Parker

et al., 2009; Figure 1B; Figure S3B). The NMF LumA-I cluster was

enriched for hormone (estrogen and progesterone) receptor

positivity and wild-type TP53 and demonstrated high stromal

infiltration scores (Figures S3B and S3D). The NMF Basal-I clus-

ter contained all but one PAM50 basal sample and was strongly

enriched for TP53 mutations and negative clinical hormone re-

ceptor status (Figure S3B). Higher levels of immune, stemness,

and chromosome instability (CIN) scores (Figures S3D–S3G) as

well as strong enrichment of proliferation-associated pathways

such as E2F targets and the G2/M checkpoint were observed

in NMF Basal-I tumors (Figure S3H).
Two clusters showed sample compositions that were discor-

dant with PAM50 subtypes. The luminal B-inclusive cluster

(NMF LumB-I) comprised all but one LumB case but also

included a subset of PAM50 LumA samples. Association anal-

ysis based on core membership (STAR Methods) showed that

NMF LumB-I tumors had fewer PIK3CA mutations than NMF

LumA-I (binomial p = 1.50 3 10�3) and lower stromal infiltration

scores (Figures S3B and S3D). The two luminal clusters also

showed remarkable dichotomies in pathway space, supporting

the concept that, although heterogeneous, these are biologically

separate tumor types. For example, cancer hallmark gene set

enrichment scores for LumA-I versus LumB-I were significantly

anti-correlated even though estrogen response-related terms

were positively enriched in both (Figures S3H and S3I). Notably,

a mixed PAM50 LumA/B cluster was also observed when clus-

tering the global RNA data in isolation, indicating that PAM50

classification, a method simplified for clinical purposes, does
Cell 183, 1436–1456, November 25, 2020 1439
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not capture all biological distinctions between LumA and LumB

(Figure S3J).

To further probe NMF luminal cluster assignments, random

forest classifiers were trained on protein or mRNA data to distin-

guish PAM50 LumA samples assigned to the NMF LumB-I clus-

ter from PAM50 LumA samples assigned to the NMF LumA-I

cluster. When these classifiers were applied to METABRIC

data (Curtis et al., 2012), samples from patients with NMF fea-

tures that drove PAM50 LumA samples into the NMF LumB-I

cluster had outcomes that were intermediate between the re-

maining PAM50 LumA samples and the PAM50 LumB samples

(Figure 1C; Figure S3K). This finding supports the NMF assign-

ment of some PAM50 LumA samples to the higher-risk LumB-I

cluster.

TheHER2-inclusive cluster (NMFHER2-I) was remarkably het-

erogeneous. Although predominantly composed of HER2-en-

riched PAM50 subtype samples and samples with centrally

confirmed, clinically positive ERBB2 status, NMF HER2-I also

included tumors from all four other PAM50 subtypes, suggesting

the presence of unifying biological features in NMF informatic

space that are absent in the PAM50-based classification (Fig-

ure S3B). An in-depth analysis of HER2-unrelated proteomic

and phosphoproteomic features that drove clustering in the

NMF HER2-I group (Figure S3L) revealed over-representation

of Gene Ontology (GO) terms (Ashburner et al., 2000) for proteins

serving functions in the endoplasmic reticulum (EnR) and for

biosynthesis of sterols and cholesterol derivatives (produced in

the EnR). These functional elements are targetable biological

pathways (Dong et al., 2019; Figure S3M; Table S5). As ex-

pected, enrichment of immune signaling was seen in the NMF

HER2-I and NMF Basal-I clusters (Figures S3E and S3H), and

mRNA and phosphoprotein expression of the key immune

checkpoint targets PDCD1 (PD1) and CD274 (PD-L1) was also

elevated relative to the two luminal NMF clusters (Figure S3N).

Previous studies utilizing proteomics to profile and cluster

breast tumors (Figure S4A) have reported varying resemblance

of proteomic subtypes to PAM50 subtypes (Bouchal et al.,

2019; Johansson et al., 2019; Tyanova et al., 2016). We analyzed

and compared the data in these studies with results of our NMF

analyses (detailed in Figures S4B–S4H). Integration of the cur-

rent dataset with that of Johansson et al. (2019) supported

NMF reassignment of some PAM50 LumA samples into the

LumB-I group and suggested that their ‘‘basal immune’’ cluster

was chiefly defined by an active immune microenvironment (Fig-

ures S4B–S4E). The subtype and ‘‘proteotype’’ markers of Tya-

nova et al. (2016) and Bouchal et al. (2019) were substantially re-

produced in our dataset (Figures S4F–S4H).

Subtype-Specific Expression of Targetable, Highly
Phosphorylated Kinases
To identify putative therapeutic targets specific for each NMF

subtype, phosphoproteomic data were used as kinase activation

surrogates (Flockhart and Corbin, 1982; Smith et al., 1993;Wang

and Wu, 2002). Phosphorylated kinases enriched in each NMF

subtype were identified using outlier enrichment analysis (Black-

Sheep Python package) (Blumenberg et al., 2019; Figure 1D;

Table S4). Many enriched kinases (false discovery rate [FDR] <

0.01) observed in each PAM50 subtype in our initial study
1440 Cell 183, 1436–1456, November 25, 2020
(Mertins et al., 2016) were also enriched in this dataset using

NMF subtypes, including PRKDC, MAP4K4 and SPEG in the

NMF Basal-I subtype; ERBB2 and CDK12 in NMF HER2-I sam-

ples; and DCLK1 in NMF LumA-I samples (Figure 1D). These pu-

tatively activated kinases are candidates for subtype-specific

treatment (Cotto et al., 2018).

The BlackSheep approach also associated phosphorylated ki-

nase outliers with recurrent somatic mutations (Figure 1E). A

noteworthy example was the increased phosphorylation levels

of TRAF2- and NCK-interacting kinase (TNIK) in ARID1Amutant

cases because TNIK is a therapeutic target due to its role in the

WNT pathway (Masuda and Yamada, 2017). Upregulation of

phosphorylated RIPK3 in tumors with MAP3K1 mutation was

also of interest because loss-of-function mutations in this stress

kinase are a poorly understood but highly recurring event in

luminal BRCA. Although RIPK3 has a role in triggering necropto-

sis, it may also have a tumor-promoting role under some circum-

stances (Lin et al., 2020). The high levels of phosphorylation of

MAST4 and DCLK1, microtubule-associated kinases and neuro-

endocrine markers, in the context of GATA3 mutation are newly

described here and therefore require validation. A final example

of these novel connections was increased phosphorylation of

SLK/LATS1 in AKT mutated tumors, which may reflect cross-

talk between the mTOR and HIPPO pathways (Chiang and Mar-

tinez-Agosto, 2012; Shin and Nguyen, 2016).

Proteogenomic Metabolic Profiling and
Acetylproteomics Highlight Subtype-Specific
Metabolism
Therapeutic targeting of abnormal cancer metabolism is

garnering increased attention (Pavlova and Thompson, 2016;

Phan et al., 2014). Tumor metabolic characteristics were profiled

at the level of the proteome, and unsupervised clustering of

differentially expressed (DE) metabolism-related proteins

(STARMethods) grouped samples into 4 clusters that closely re-

flected the 4 NMF clusters described in Figure 1A (Figure 2A).

Metabolism-driven cluster 1 almost exclusively represented

NMF Basal-I tumors with upregulation of proteins involved in

DNA elongation, translation, and metabolism of carbohydrates

and downregulation of cholesterol biosynthesis, metabolism of

amino acids, and vitamins and cofactors. Metabolism-driven

clusters 2 and 3 largely coincided with NMF LumA-I and NMF

LumB-I, respectively, with an inverse overall metabolic feature

profile relative to NMF Basal-I. Only NMF LumA-I showed upre-

gulated glycosaminoglycan metabolism, which may reflect the

stroma-enriched features of these tumors (Figure S3D). Meta-

bolism-driven cluster 4, dominated by NMF HER2-I tumors,

showed upregulation of cholesterol biosynthesis and lipid meta-

bolism as a HER2-I feature that is independent of ERBB2 ampli-

fication status (Figures S3I and S3J).

Protein acetylation (Ac) has been implicated in cellular meta-

bolism in addition to roles in epigenetic regulation (Ali et al.,

2018; Choudhary et al., 2009; Verdin and Ott, 2015). Here, Ac

levels normalized to protein abundance were used to identify

NMF cluster-specific protein Ac events (STAR Methods). Uni-

form upregulation of Ac for TCA cycle and b-oxidation proteins

in the NMF Basal-I cluster and for glucose metabolism and inter-

leukin-1 (IL-1) signaling-related proteins in the NMF LumB-I
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clusters was observed in these analyses (Figure 2A). Ac levels

were also differentially distributed across cellular compartments.

Most of the DE mitochondrial Ac sites were upregulated in NMF

Basal-I, whereas two thirds of DE cytoplasmic Ac sites were

downregulated compared with LumB-I, implying compartment-

specific regulation of Ac in the NMF Basal-I subtype (Figures

2B and 2C). This suggests that major cytoplasmic andmitochon-

drial metabolic pathways are differentially regulated between

NMF Basal-I and LumB-I subtypes. For example, for NMF

Basal-I samples, the central metabolic pathway in the cyto-

plasm, glycolysis, was upregulated at the protein level (HK3,

PFKP, GAPDH, ENO1, and LDHB) and hypoacetylated at the

post-translational level (GPI, TPI1, GAPDH, PGK1, PGAM1,

ENO1, PKM, and LDHA) (Figure 2B; Figures S5A and S5B).

Serine synthesis proteins were also upregulated (PHGDH

and PSAT1).

Copy number was correlated with metabolic enzyme expres-

sion in NMF Basal-I tumors but not in other subtypes, suggesting

that activation of glycolysis and serine synthesis pathways might

be uniquely driven by chromosomal aberrations in the NMF

Basal-I subtype (Figure S5C). As further examples of NMF

Basal-I-specific metabolism, mitochondrial pyruvate dehydroge-

nase complex (PDC), TCAcycle, and b-oxidation enzymeproteins

were specifically hyperacetylated (Figures 2B; Figures S5A and

S5B). An unbiased search for potential regulators of metabolic

protein Ac revealed significant negative associations between

protein levels of the mitochondrial deacetylase SIRT3 and Ac of

mitochondrial proteins (Figure 2D), suggesting that deregulation

of SIRT3 protein expression (Figure S5D) could broadly affect

mitochondrial Ac in BRCA. This is consistent with the role of

SIRT3 in suppressing acetyl-coenzyme A (CoA)-mediated non-

enzymatic mitochondrial Ac (Weinert et al., 2015). Although

SIRT3 inhibition modulates cell survival and proliferation (Alhaz-

zazi et al., 2016), SIRT3 has roles as a tumor suppressor and an

oncogene (Chen et al., 2014; Xiong et al., 2016), leaving open

the question of whether SIRT3 is a viable therapeutic target.

Unsupervised clustering of nuclear protein Ac revealed two

subgroups of NMF-Basal-I tumors (Figure 2E; Figure S3A). The
Figure 2. Proteogenomics (PG) Metabolic Profiling
(A) Heatmap showing unsupervised clustering of DE metabolic proteins across NM

DE normalized Ac values (normalized to protein abundance; Kruskal-Wallis test,

(B) Pathway schematic showing DE metabolic proteins and normalized Ac sites

(C) Bubble chart showing breakdown of upregulated and downregulated proteins

cell compartment.

(D) Significant associations (linear model coefficient FDR p < 0.1) between protein

acetyltransferases) (columns) and Ac of mitochondrial metabolic proteins (rows).

(E) Heatmap showing unsupervised clustering of nuclear protein acetylation, whi

p < 0.05).

(F) Protein scores of DNA repair pathways across clusters defined in (E). Wilcoxon

***p < 0.001, ****p < 0.0001. BER, base excision repair; NER, nucleotide excision re

Fanconi anemia; HR, homologous recombination. Boxplots show 1.53 the interq

(G) Scatterplot showing global differential protein expression and Ac analysis resu

The x axis shows the protein median fold change multiplied by -log10(FDR p value

value). Ac or protein changes were considered significantly different if FDR p value

by significantly different Ac sites for which the Ac median fold change is positive

defined by significantly different proteins for which the protein median fold chan

(H) Significantly different Ac sites in cluster 1 versus cluster 3 are found in HATs, th

1.53 the interquartile range for each group, centered on the median.

See also Figure S5 and Tables S2 and S6.
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nuclear Ac Basal-I cluster 1 (N-Ac Basal-I C1) showed signifi-

cantly higher protein mean expression levels for multiple DNA

repair pathways, such as the base excision repair (BER), nucle-

otide excision repair (NER), double-strand break repair (DSBR),

single-strand break repair (SSBR), homologous recombination

(HR), and Fanconi anemia pathways than the other N-Ac

Basal-I cluster (C3) (Figure 2F). Table S6 includes mean expres-

sion levels for unique proteins from specific repair pathways

(Anurag et al., 2018a) as well as for more inclusive SSBR and

DSBR gene sets. The two N-Ac Basal-I clusters were distin-

guished by differential Ac of a number of specific Ac sites without

change in the corresponding protein levels (Figure 2G; Fig-

ure S5E). These differentially acetylated proteins were enriched

for nucleoplasmic proteins, RNA metabolism, chromatin-modi-

fying enzymes, and histone Ac by the histone acetyltransferase

(HAT) pathway (Figure S5F). Interestingly, elevated Ac in the acti-

vation loop of CREBBP-K1591K1592 may explain the observed

hyperacetylation of nuclear proteins in N-Ac C1 (Figure 2H). The

presence of active CREBBP was suggested by high Ac of multi-

ple histone H2B N-terminal Ac sites (Figure 2H), as observed

previously (Weinert et al., 2018). Other lysine acetyltransferases

(KAT7 and KAT6A/B) and their complex partners (JADE3,

BRPF3, BRD1, ING4, and MEAF6) were also hyperacetylated

in N-Ac C1, although the effect of Ac on these proteins is largely

unexplored. However, the increased Ac of histone H4 at site K13

and H3.3 at site K15 (Figure 2H), known targets of KAT7 acetyl-

transferase (Miotto and Struhl, 2010; Mishima et al., 2011), sug-

gests higher activity in N-Ac Basal-I C1. Finally, both subunits of

the Ku70/80 complex from the non-homologous end joining

(NHEJ) pathway demonstrated elevated Ac of Ac sites located

in the DNA-PK binding (Figure 2H, XRCC5-K702) and C-terminal

arm domains (Figure 2H, XRCC6-K516).

Proteogenomics Analysis of ERBB2+ BRCAs
We recently explored ERBB2 status using microscaled proteo-

genomics analyses of core needle breast cancer biopsy speci-

mens from ERBB2+ BRCA patients treated with neoadjuvant

anti-ERBB2 antibody therapy (DP1; Satpathy et al., 2020). In
F clusters (Kruskal-Wallis test, FDR p < 5x10–05). The bottom heatmap shows

FDR p < 0.005) with the same sample ordering as the top heatmap.

(Wilcoxon test, FDR p < 0.05) mapped onto key metabolic pathways.

and normalized Ac sites in NMF Basal-I compared with any other subtype by

expression of mitochondrial HDACs (histone deacetylases) and HATs (histone

ch was differentially expressed across NMF clusters (Kruskal-Wallis test, FDR

test p value significance is shown comparedwith cluster 1. *p < 0.05, **p < 0.01,

pair; SSBR, single-strand break repair; DSBR, double-strand break repair; FA,

uartile range for each group, centered on the median.

lts in cluster 1 versus cluster 3, representing the two subgroups of NMF Basal-I.

). The y axis shows the Ac site median fold change multiplied by -log10(FDR p

< 0.05 and median fold change > 0.5. The ‘‘Ac up in cluster 1’’ group is defined

and the protein change is not significant. The ‘‘protein up in cluster 1’’ group is

ge is positive and the Ac change is not significant.

eir complex partners, histone proteins, and the NHEJ pathway. Boxplots show
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addition to an unresponsive tumor lacking ERBB2 amplification

by exome sequencing and ERBB2 protein by mass spectrom-

etry, these analyses determined that two treatment-resistant

cases (of a total of 13 cases with ERBB2 gene amplification)

had ‘‘pseudo-ERBB2+’’ status, with low-level ERBB2 protein

expression (more similar to non-amplified cases than amplified

cases with pathologic complete response [pCR]) despite evi-

dence of ERBB2 amplification by exome sequencing (DP1 sam-

ples in Figure 3A; Figure S6A). Because these pseudo-ERBB2+

samples are examples where anti-ERBB2 treatment may not

have been effective because of lack of drug target expression,

proteogenomics approaches were used to assess ERBB2 driver

status in the current dataset and our earlier cohort (Mertins et al.,

2016; Figures 3A and 3B; Figures S6A and S6B). Analysis of the

current cohort classified 15 tumors proteogenomically as

ERBB2+ (PG+) (‘‘Prospective’’ samples in Figures 3A and 3B;

Figures S6A and S6B). Central immunohistochemistry (IHC)

testing was used to refine ERBB2 status where possible (68 tu-

mors), and all of the ERBB2 PG+ samples were classified ac-

cording to ASCO-CAP guidelines (https://www.cap.org/) as

ERBB2+ (IHC score of 3+ or IHC score of 2+ and amplified by

fluorescence in situ hybridization [FISH]) or with equivocal status

(IHC score of 2+ without FISH results or amplified by FISH

without IHC results). Similar to the data in DP1, cases of

pseudo-ERBB2 positivity were identified, with two of 17 in-

stances of ERBB2 gene amplification in the current cohort and

one of 16 in the retrospective cohort being associated with pro-

tein expression levels that were within the distribution for ERBB2

PG� samples (Figures 3A and 3B; Figures S6A and S6B). The

DP1 study also identified a pseudo-ERBB2+ case with amplifi-

cation and overexpression of TOP2A, suggesting an alternative

chromosome 17 amplicon driver in some cases (Harris et al.,

2009). Supporting this hypothesis, TOP2A amplification and pro-

tein overexpression in the absence of ERBB2 protein overex-

pression were observed in one pseudo-ERBB2+ case each in

the present and retrospective cohorts (Figure 3A; Figure S6A).

The lack of close alignment between ERBB2 positivity and

intrinsic subtype was also investigated. Only seven of 15

ERBB2 PG+ samples were classified as HER2E by PAM50 sub-

typing, whereas an additional seven HER2E samples were not

ERBB2 PG+ (Figure 3A; Figure S6C). To better understand bio-

logical characteristics that cause samples to cluster within the

HER2E group despite inconsistent ERBB2 status, an analysis

of phosphosites from the human Kyoto Encyclopedia of Genes

and Genomes (KEGG) (Kanehisa and Goto, 2000) ERBB
Figure 3. PG Classification of ERBB2 Tumors

(A) Proteogenomics analysis of the ERBB2 locus in this study (‘‘Prospective’’), bi

tumors (‘‘Retrospective’’; Mertins et al., 2016). The heatmap depicts clinical dat

(bottom panel) of genes proximal to ERBB2 on chromosome 17q for samples th

(IHC) and/or in situ hybridization (ISH), or ERBB2 PG+. PG amplification of TOP2

(B) Outlier analysis of ERBB2 and STARD3 or GRB7 confirms higher protein levels

of ERBB2 protein in non-amplified samples (blue histogram) in the prospective and

distribution of ERBB2 non-amplified samples are considered ‘‘pseudo-ERBB2+.

(C) Phosphopeptide levels for components of the KEGG ErbB signaling pathway i

the heatmap shows subtype classifications and clinical marker status for each o

rations (SCNAs) for genes in the amplicon closely linked to ERBB2, followed by

phosphopeptides from the ERBB2 pathway.

See also Figure S6 and Tables S1 and S2.
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signaling pathway (hsa04012) was performed. As expected, all

PAM50 HER2E/ERBB2 PG+ samples had high levels of ERBB2

phosphopeptides, whereas PAM50 HER2E/ERBB2 PG� sam-

ples had markedly lower levels but showed elevated levels of

phosphorylation of other ERBB family members and of the

mitogen-activated protein kinase (MAPK) signaling pathway

compared with PG+ samples (Figure 3C). This suggests that

alternative drivers of ERBB signaling could be targeted in

PAM50 HER2E tumors without ERBB2 amplification.

PG Analysis of the Immune Tumor Microenvironment (I-
TME) Suggests Broader Applicability of Immunotherapy
in BRCA
RNA-based immune cell deconvolution signatures and protein-

level signatures for immune modulators (Thorsson et al., 2019)

revealed a range of immune-related features across all four

intrinsic subtypes (Table S6), including the immune checkpoint

proteins PD1 and PD-L1 at the RNA and phosphosite levels (Fig-

ures 4A and 4B; Figures S7A and S7B). Anti-CD3 (pan-T cell) IHC

validated evidence of an active I-TME (Figures 4A, 4C, and 4D),

with significant correlations between CD3+ T cell tumor infiltra-

tion and RNA-based estimates of overall I-TME provided by CI-

BERSORT absolute scores (Figure 4E). A stimulatory immune

modulator protein signature was even more highly correlated

with the IHC I-TME data (Figure 4F). RNA level profiles inferred

for individual acquired and innate immune cell types (including

B cells; cytotoxic, helper, and regulatory T cells; natural killer

(NK) cells; dendritic cells (DCs); eosinophils; and macrophages)

generally tracked with CIBERSORT absolute scores in each sub-

type (e.g., cluster 1; Figure S7A). However, effector memory

CD4+ and activated CD4+ and CD8+ signatures, which do not

appear to be well correlated with the CIBERSORT score, were

lower in the PAM50 LumA subtype than in all other subtypes

(cluster 3; Figure S7A). Furthermore, interferon gamma (IFNG)

and antigen presentation machinery (APM1) protein signatures

(Thorsson et al., 2019) appeared to track the immune score in

all PAM50 subtypes except LumA, where they were lower than

in Basal (cluster 4; Figure S7A). Finally, stromal, fibroblast,

mast cell, endothelial cell, and neutrophil signatures were

elevated in PAM50 LumA tumors with higher CIBERSORT

scores but lower overall in LumB and Basal tumors (cluster 2;

Figure S7A). Thus, acquired immune response hallmarks gener-

ally appear not to be activated in LumA, whereas other PAM50

subtypes, including LumB, exhibit features consistent with acti-

vation of acquired immunity, a finding consistent with previous
opsies from ERBB2+ BRCA tumors (‘‘DP1’’; Satpathy et al., 2020), and TCGA

a (top panel), copy number alterations (center panel), and protein expression

at were PAM50 HER2E, clinical ERBB2+/equivocal by immunohistochemistry

A, a potential alternative driver in the locus, is indicated by red arrowheads.

in most ERBB2-amplified samples (purple histogram) relative to the distribution

retrospective datasets. Amplified samples with protein levels falling within the

’’

n HER2-associated tumors (PAM50 HER2E and ERBB2 PG+). The top panel of

f these samples, and the bottom panel indicates somatic copy number aber-

the corresponding protein levels. The bottom panel depicts abundances of

https://www.cap.org/
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comprehensive immune cell profiling of the METABRIC dataset

(Curtis et al., 2012; Varn et al., 2016). This analysis extends

recent reports suggesting that a significant proportion of

PAM50 LumB tumors have an active I-TME and overexpress im-

mune checkpoint and STAT1/IFNG genes (Anurag et al., 2020).

This suggests that immunotherapy should be considered for

subsets of luminal tumors with an active I-TME.

APOBEC-Mediated Mutagenesis Correlates with an
Active I-TME in Luminal BRCA
To identify potential drivers of immunogenicity across common

BRCA subtypes, PD-L1 mRNA levels were correlated separately

with proteomics data from PAM50 luminal and basal cases (Fig-

ure 5A; Figure S7C). Several mostly immune-related proteins,

including APOBEC3G, showed strong positive correlation with

PD-L1 in both subtypes. APOBEC3G protein levels were also

correlated with the CIBERSORT immune score and were associ-

atedwith APOBECmutagenesis signatures (Figure 5B). Applying

a stringent filter for APOBEC enrichment to whole-exome data

(STAR Methods), six cases were diagnosed as APOBEC-en-

riched (one PAM50 HER2E, three PAM50 LumA, and two

PAM50 LumB), and two of the luminal samples were also posi-

tive for the SBS13 APOBEC Catalogue Of Somatic Mutations

In Cancer (COSMIC) signature, which has been associated pre-

viously with lymphocyte infiltration in ER+ BRCA (Smid et al.,

2016). High activity of APOBEC enzymes, particularly APO-

BEC3B, has been associated with a hypermutation phenotype

(Roberts and Gordenin, 2014). Consistent with this association,

APOBEC-enriched cases had higher mutation loads and higher

APOBEC3B protein levels compared with the rest of the tumors

(Figure 5B; Figure S7D; p = 0.008 and p = 0.1 respectively, Wil-

coxon test). Most of the samples with high APOBEC-associated

SBS2 and SBS13 signature scores (from COSMIC v.3; Tate

et al., 2019) also had high levels of APOBEC3G. These observa-

tions suggest that APOBEC-driven mutagenesis can contribute

to an active immune microenvironment in ER+ BRCA with links

to PD-L1 mRNA expression.

Loss of SSBR Proteins Promotes Immunity in
Luminal BRCA
Gene set enrichment analysis (GSEA) (Subramanian et al., 2005)

for GO biological processes (GO BP) using the correlation anal-

ysis results from Figure 5A confirmed that multiple immune-

related processes were positively correlated with PD-L1 expres-

sion in PAM50basal and luminal samples (Figure 5C). In contrast,

NER,RNAsplicing, andmRNAprocessingwere negatively corre-

latedwith PD-L1 in PAM50 luminal samples only, suggesting loss
Figure 4. Immunological Landscape of BRCA

(A) Heatmap showing the wide range of expression levels for immune-related feat

CIBERSORT, ESTIMATE, and xCell and for protein-derived signatures for immune

panels. The third data panel shows log2 ratios for normalized RNA-seq and proteo

approved immune checkpoint targets PD-L1, PD1, and CTLA4. The bottom pane

subtype, samples are ordered by increasing CIBERSORT immune score.

(B) Distribution of CIBERSORT immune scores in each PAM50 subtype. Boxplot

(C) Representative images for CD3 IHC for samples classified as CD3� (top) and

(D) Images showing examples of CD3+ samples with elevated CIBERSORT scor

(E) Spearman-rank correlation of CD3+ cell counts with CIBERSORT score.

(F) Spearman-rank correlation of CD3+ cell counts with stimulatory immune mod

See also Figure S7 and Tables S2 and S6.
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of these processes in luminal tumors with active immunity. The

mean expression level of GO NER proteins was also negatively

correlated with PD-L1 RNA specifically in the luminal but not

the basal PAM50 subtypes in the TCGA retrospective study,

providing supportive evidence of these associations (Figure 5D).

Because increased PD-L1 expression has been associated pre-

viously with DNA repair deficiency in breast tumors (Parkes et al.,

2016), and loss of expression of NER and BER genes was asso-

ciatedwith resistance to endocrine therapy in ER+BRCA (Anurag

et al., 2018a; Haricharan et al., 2017), the consistent anti-correla-

tion of NERproteinswith PD-L1 expression suggests therapeutic

potential for immunotherapy in endocrine-resistant ER+ BRCA.

Importantly, low protein levels for the GO NER pathway were

associated with high mutation load in luminal but not basal sam-

ples (Figure S7E). Upregulated immune checkpoint components

in endocrine therapy-resistant LumBBRCAhavebeennotedpre-

viously (Anurag et al., 2020), suggesting that NER deficiency is a

potential link between upregulated immune checkpoints and

endocrine therapy resistance. Because the GOBPNER pathway

contains genes that overlap with other DNA repair pathways,

pairwise Spearman correlations of immune features with scores

from Table S6 for specific DNA repair pathways were examined

together with the negatively correlated GO BP pathways.

Although the unique NER protein score was not significantly

anti-correlated with PD-L1, it was negatively correlated with the

CIBERSORT immune score (Figure 5E; Table S7). Indeed, nearly

all SSBR pathways, which include BER, mismatch repair (MMR),

and NER, were anti-correlated with the CIBERSORT as well as

the protein-derived stimulatory and inhibitory immunemodulator

scores, associations that were confirmed in the retrospective da-

taset. As with NER, the associations between low levels of other

SSBR protein levels and an active tumor microenvironment ap-

peared to be specific for PAM50 luminal tumors and were not

observed in basal-like tumors (Figure 5E; Figure S7F; Table S7).

ER signaling modulates the DNA damage response (DDR)

(Caldon, 2014). Therefore, outlier phosphopeptide abundance

DDR scores for a set of ataxia telangiectasia mutated (ATM)/

ATR/DNAPK target SQ/TQ peptides, shown previously to be

induced in response to DNA damage, were examined (Matsuoka

et al., 2007). DDR scores, an ATMauto-phosphorylation site, and

the downstreamChk2 protein were lower in PAM50 luminal sam-

ples than in basal samples (Figures S7G and S7H). Notably, dif-

ferences in ATM activity were present only in phosphoproteomic

data, with the RNA and protein levels showing no significant dif-

ferences between PAM50 luminal and basal subtypes (Fig-

ure S7G). This suggests that luminal samples may have relatively

suppressed DNA damage checkpoint activity, possibly because
ures in each PAM50 subtype. Z scores of RNA-based immune signatures from

modulator gene sets from Thorsson et al. (2019) are shown in the top two data

mics data (phosphoprotein is themedian for all sites on a given protein) for FDA-

l shows CD3 IHC results for samples available for centralized IHC. Within each

s show 1.53 the interquartile range for each group, centered on the median.

CD3-excluded (bottom).

es in each PAM50 subtype.

ulator protein scores.
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of inhibition of ATM by ESR1 (Anurag et al., 2018a; Haricharan

et al., 2017). This could facilitate tolerance for single-strand

break repair defects (NER, BER, and MMR) in luminal BRCA

and also de-repress CDK4/6, consistent with recent postulates

on the efficacy of CDK4/6i in ER+ BRCA (Haricharan et al.,

2017; Pernas et al., 2018).

PG Analysis of Rb Status May Inform the Response to
CDK4/6 Inhibitor Therapy
Proliferation rate is a critical prognostic feature in BRCA, and the

cell cycle is a target for endocrine therapy (Ellis et al., 2017) and

CDK4/6 inhibition in ER+, ERBB2� advanced BRCA (Pernas

et al., 2018). CDK4 andCDK6, in complex with Cyclin D, promote

cell cycle progression by phosphorylating and inactivating the

Retinoblastoma transcriptional inhibitor (Rb) during G1, whereas

the Cyclin E/CDK2 complex further contributes to inhibition of Rb

during G1-S transition (Goel et al., 2018). To compare PG fea-

tures with cell cycle control in hormone receptor (HR)+/ERBB2

PG� and triple-negative BRCA (TNBC) tumors, the multi-gene

proliferation score (MGPS; Figure 6A; Table S6) was generated

for each sample (Ellis et al., 2017; Whitfield et al., 2002). Multi-

omics analyses of Cyclin E (CCNE1) and CDK2, stemness

scores, E2F activity scores (derived from their target genes in

the Molecular Signatures Database (MSigDB; Liberzon et al.,

2015), and CDK2 activity scores (derived from kinase target

sites; Hornbeck et al., 2015; Krug et al., 2019) revealed positive

correlations with MGPSs in both groups (Figures 6A and 6B; Ta-

ble S7), although the MGPS was higher in TNBC than in HR+/

ERBB2� samples (p = 3.13 10�5, Wilcoxon rank-sum test; Fig-

ure 6A). Although Cyclin D1 (CCND1) RNA, protein, and phos-

phorylation levels showed weak or no correlation with MGPS in

both groups, these features were significantly higher in HR+/

ERBB2� samples than in TNBC samples (p = 1.0 3 10�7,

1.7 3 10�6, and 0.023, respectively; Wilcoxon rank-sum test).
Figure 5. Association of APOBEC Mutations and DNA Damage Repa

Tumors

(A) Correlation of protein levels with PD-L1mRNA in PAM50 basal (x axis) and lum

Spearman-rank correlations are plotted. Protein data for PD-L1 was sparse in this

DP1 study, indicating that the RNA is a suitable surrogate for protein (Figure S7C

(B) Although mutation load is correlated with the immune microenvironment in

specifically show enrichment for APOBECmutations. Luminal samples without AP

(no APOBEC enrichment), PAM50 HER2E samples without APOBEC enrichmen

CIBERSORT scores. SBS13 and SBS2 are similarity scores for the whole-exom

responding COSMIC signature. APOBEC mutation fraction indicates the fract

APOBEC3B protein levels are also shown.

(C) Nucleotide excision repair (NER), mRNA processing, and RNA splicing are ne

graph shows normalized enrichment scores (NESs) for the top GO biological pr

together with the corresponding NES for basal samples (red bars) from the gene

(D) The mean log2 TMT ratio for proteins from the GOBP NER pathway is negative

basal samples in the prospective (top) and retrospective (bottom) datasets. Sca

(median-MAD-normalized data) on the x axis. Blue points show PAM50 luminal (

show the linear fit for each group.

(E) Heatmaps showing pairwise Spearman-rank correlations within the PAM50 lum

(right) datasets for immunemicroenvironment features (CTLA4, PD1, and PD-L1 R

correlated with PD-L1 in luminal tumors (C), specific DNA repair pathway scores, s

(not included for retrospective), APOBEC mutation signatures (SBS2 and SBS13

processing/splicing. MMR, mismatch repair; BER, base excision repair; NER, nu

bination; FA, Fanconi anemia; DR, direct repair; NHEJ, non-homologous end joi

based scores are the mean protein levels of all genes in the set.

See also Figure S7 and Tables S2, S6, and S7.
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Despite lack of correlation between Cyclin D1 and MGPS,

CDK4 and CDK6 activity levels were positively correlated with

MGPS in HR+/ERBB2� samples but had weakly negative or

no correlation in TNBC samples (Figures 6A and 6B; Table S7),

suggesting that variability in CDK4/6 activity controls the vari-

ability in proliferation rates in HR+ BRCA but not in highly prolif-

erative TNBC tumors. More distinctly, although Rb RNA levels

did not show significant correlation with MGPS (Spearman

rho = �0.069, p = 0.55 for HR+/ERBB2�, rho = �0.36, p =

0.060 for TNBC), Rb protein and phosphoprotein levels were

significantly positively correlated in HR+/ERBB2� samples

(Spearman rho = 0.24, p = 0.035 for protein and rho = 0.53,

p = 1.06 3 10�6 for median of all Rb phosphosites) but signifi-

cantly negatively correlated in TNBC samples (Spearman rho =

�0.54, p = 0.003 for protein and rho =�0.46, p = 0.015 for phos-

phorylation; Figures 6A and 6C). Loss of Rb in TNBC leading to

higher proliferation is consistent with the inhibitory role of Rb in

cell cycle progression, but the association of higher Rb levels

with greater proliferation in HR+ samples is contrary to its role

as negative regulator of proliferation (Goel et al., 2018). However,

phosphorylation of Rb by cyclin-dependent kinases relieves this

inhibition, and, consistent with these regulatory events, phos-

phorylation levels of Rb showed a stronger correlation with

MGPS in HR+/ERBB2� cases than Rb protein levels (Spearman

rho = 0.53, p = 1.13 10�6 for mean of Rb phosphosites and rho =

0.24, p = 0.035 for protein; Figure 6A; Table S7).

Consistent with expectations (Cancer Genome Atlas Network,

2012), the TNBC cases here were often TP53mutant, with active

CDK2 and high levels of Cyclin E mRNA and phosphoprotein

(Figure 6A; p = 1.04 3 10�7 for CDK2 activity, p = 6.2 3 10�12

for CCNE1 RNA, and p = 7.3 3 10�10 for CCNE1 phosphopro-

tein, Wilcoxon rank-sum tests comparing TNBC with HR+/

ERBB2�). However, there was a clear separation of TNBC sam-

ples into Rb-low and Rb-high phosphoprotein groups (n = 16 for
ir Pathway Levels with the Immune Microenvironment in Luminal

inal (LumA and LumB, y axis) samples. Signed log10 FDR-corrected p values of

study, but we observed high correlation between PD-L1 RNA and protein in the

).

PAM50 luminal and basal BRCA, luminal samples with a high mutation load

OBEC enrichment, luminal samples with APOBEC enrichment, basal samples

t, and HER2E samples with APOBEC enrichment are ordered by increasing

e sequencing (WES)-derived mutation profile of a given sample with the cor-

ion of mutations that are APOBEC-associated mutations. APOBEC3G and

gatively correlated with PD-L1 in PAM50 luminal but not basal BRCA. The bar

ocess gene sets correlated with PD-L1 mRNA in luminal samples (blue bars)

set enrichment analysis (GSEA) of signed log10 p values from (A).

ly correlated (Spearman) with PD-L1 RNA expression in PAM50 luminal but not

tterplots show the mean log2 TMT ratios on the y axis and log2 mRNA ratios

LumA and LumB) samples, red points show PAM50 basal samples, and lines

inal (combined A and B) samples from the prospective (left) and retrospective

NA andCIBERSORT and protein-based signatures fromA), GOBP scores anti-

ingle- and double-strand break repair (SSBR and DSBR) scores, mutation load

), chromosomal instability (CIN, also not included for retrospective), and RNA

cleotide excison repair; TLS, translesion synthesis; HR, homologous recom-

ning; DDR, DNA damage response (primarily checkpoint proteins). Gene set-
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Rb low and n = 12 for Rb high; Figure S7I). This difference reflects

Rb protein levels and CDK4/6 activity. For example, the inferred

activities for CDK4 and CDK6 were higher in TNBC tumors with

high levels of Rb phosphorylation compared with TNBC tumors

with low Rb phosphorylation (Figure S7J). Predictably, three of

the four TNBC tumors with RB1 mutations/deletions had low

levels of Rb phosphorylation. The role of Rb in CDK4/6 regulation

in TNBC was further probed by examining published cell line

perturbation experiments from the Genomics of Drug Sensitivity

in Cancer (GDSC) resource (Iorio et al., 2016; Yang et al., 2013).

In this dataset, TNBC cells with RB1 mutations or deletions did

not respond to the CDK4/6 inhibitor palbociclib, whereas some

wild-type TNBC lines were responsive (Figures 6A and 6D).

This suggests that knowledge of genomic Rb status could prove

useful for repurposing CDK4/6 inhibitors for TNBC. However,

TNBC samples often showed loss of Rb protein without a detect-

able genomic aberration in the RB1 gene (Figure 6A). This raised

the question of whether Rb protein estimates could contribute to

prediction of CDK4/6 inhibitor activity when the RB1 status is

wild type according to genomic analysis. Consistent with this hy-

pothesis, further analysis of the GDSC data revealed examples

of RB1 wild-type cell lines with low levels of Rb protein that

were indeed less responsive to CDK4/6 inhibitor treatment (Fig-

ure 6E). In general, Rb protein levels were correlated with

response to palbociclib regardless of RB1 genotype (Spearman

rho = �0.61, p = 0.022; Figure 6E). An exception was a cell line

that had high levels of Rb protein but showed a poor response;

however, this example harbored two hotspot RB1missense mu-

tations in the pocket domain that is required for transcriptional

repression (I388S and P515L) (Chow and Dean, 1996). A second

line with an in-frame deletion of N480 in RB1 was resistant and

had low Rb levels (Figure 6E), consistent with reports that the

N480 mutation may destabilize the Rb protein (Harbour, 2001;

Lee et al., 1998). Thus, analysis of Rb provides a good example

of how PG data integration could enhance prediction of drug

efficacy.
Figure 6. Rb Phosphorylation Status Indicates Potential Candidates fo

(A) Heatmap of PG features related to regulation of cell cycle by the Rb protein. S

et al., 2017) within HR+ (ER+ or PR+) / ERBB2 PG� and TNBC subtypes. Correlat

along the side. The pathway diagram on the left depicts how the features included

boxes for SCNAs indicate gene amplification, whereas blue boxes indicate gene d

of all phosphosites for a given gene. Z scores of kinase target NESs from single sam

of single sample GSEA NES values using MSigDb Hallmark sets, and of the stem

(B) Plot of Spearman correlations of kinase activity scores (kinase target PTM-SE

positive correlations between CDK4 and CDK6withMGPS in hormone receptor+

the activity scores in each of the groups are shown below the corresponding po

(C) Loss of Rb drives proliferation in TNBC samples, whereas phosphorylation

scatterplot of Rb phosphoprotein (median of all phosphosites) log2 TMT ratios

proliferation in TNBC samples, whereas phospho-Rb is positively correlated in HR

/ ERBB2 PG�.

(D) Response to palbociclib (AUC, area under the dose-response curve) in ER+ / H

of Drug Sensitivity to Cancer (GDSC) database (Iorio et al., 2016; Yang et al., 2

treatment (AUC), whereas ER� / HER2� cell lines with wild-type RB1 show simi

range for each group, centered on the median. P value is from the Kruskal-Walli

(E) Rb protein levels are negatively correlated with response to palbociclib across

for Rb protein on the y axis and AUC on the x axis. Shown are cell lines from (D)

circles, WT ER� / HER2� cells; green circles, RB1 deletion or frameshift mutant

shows the linear regression fit for Rb protein versus AUC. Spearman correlation

See also Figure S7 and Tables S2, S6, and S7.
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To further investigate Rb-associated heterogeneity of prolifer-

ation within TNBC samples, TNBCtype was deployed (Chen

et al., 2012). Tumors classified as basal-like 1 (BL1) had higher

proliferation scores, and most showed loss of Rb (seven of 10

BL1 TNBC samples were Rb low) as well as TP53 mutations

(nine of 10) (Figure 6A). The few TP53 wild-type TNBC tumors

were predominantly classified as luminal androgen receptor

(LAR) tumors, with lower proliferation scores than BL1 tumors

(p = 0.014, Wilcoxon rank-sum test), the highest protein levels

of androgen receptor (AR) within TNBC, and the presence of

PIK3CA mutations (Figure 6A). However, only two of the four

LAR tumors were classified as Rb high, and AR protein did not

show strong correlation with Rb protein (Spearman Rho =

0.27, p = 0.17) or phosphoprotein (Spearman Rho = 0.12, p =

0.54) levels in TNBC samples, in contrast to a previous study

showing that 83% of AR+ samples were also Rb+ (by IHC) (Patel

et al., 2020). Of note, inferred mTOR kinase activity was also

higher in TNBC tumors with elevated Rb phosphoprotein levels

compared with Rb-low tumors, suggesting activation of the

PIK3-AKT-mTOR pathway (p = 0.037, Wilcoxon rank-sum test;

Figure S7J) despite similar frequencies of PIK3CA mutations in

both groups (Figure 6A). Thus, TNBC tumors with features

demonstrating intact Rb and/or LAR represent a complex setting

where PIK3CA, CDK4/6, and AR inhibition are therapeutic op-

tions to consider depending on the specificmolecular character-

istics of a particular tumor (Asghar et al., 2017; Lehmann et al.,

2014; Liu et al., 2017; Yamamoto et al., 2019).

DISCUSSION

The high-quality, multi-omics resource we created allows inves-

tigators to explore correlations between the genomic landscape

and the downstream effects in the BRCA proteome, phospho-

proteome, and acetylproteome, extending and refining analytical

opportunities provided by prior studies (Bouchal et al., 2019; Jo-

hansson et al., 2019; Mertins et al., 2016; Tyanova et al., 2016).
r CDK4/6 Inhibitor Therapy in TNBC

amples are ordered by RNA-based multi-gene proliferation score (MGPS; Ellis

ion of each feature with the MGPS in each subtype is indicated by the bar plots

in the heatmap regulate G1-S progression to promote E2F transcription. Red

eletions. Phosphoprotein levels are represented by the median log2 TMT ratio

ple post-translational modification-signature enrichment analysis (PTM-SEA),

ness and CIBERSORT (CS) immune scores are also shown.

A NES) for each Cyclin-dependent kinase (CDK) with MGPS, showing strong

(HR+) / ERBB2 PG� but not TNBC samples. Density plots of the distributions of

int for each kinase. P values were derived from Wilcoxon rank-sum tests.

of Rb is strongly associated with proliferation in HR+/ERBB2� samples. A

versus MGPS shows strong negative correlation between phospho-Rb and

+ / ERBB2 PG� samples. Points are colored by subtype. Red, TNBC; blue, HR+

ER2� (circles) and ER� / HER2� (triangles) BRCA cell lines from the Genomics

013). ER� / HER2� cell lines with RB1 mutations/deletions are refractory to

lar sensitivity as ER+ / HER2� cell lines. Boxplots show 1.53 the interquartile

s test.

all HER2�BRCA cell lines from the GDSC. A scatterplot shows log2 TMT ratios

with Rb protein data. Gray triangles, wild-type (WT) ER+ / HER2� cells; gray

ER� / HER2� cells; yellow circles, RB1 missense ER� / HER2� cells. A line

rho and p values are also shown.
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Numerous observations with diagnostic or therapeutic potential

emerged from our analyses. In the case of ERBB2+ BRCA, we

suggest that integrated DNA and protein level analysis of the

long arm of chromosome 17 could be a more quantitative

approach than FISH/IHC. Integrated analysis of mutational sig-

natures and DNA repair processes, I-TME profiles, and expres-

sion of targets for immune checkpoint (IC)-directed therapies

defined subsets of LumA and LumB tumors with APOBEC-medi-

ated mutagenesis or single-strand break repair defects that

could benefit from IC treatment. Our data also hint that accurate

PG assessment of Rb could prove useful as a predictive marker

that could enable the use of CDK4/6 inhibitors in a subset

of TNBC.

Deep, quantitative analyses of phosphorylation and acetyla-

tion by proteomics provided unique observations with potential

clinical effects. For example, phosphoproteomics identified

new connections between tumor suppressor loss and signaling,

including upregulation of RIPK3 in MAP3K1 mutant tumors, the

WNT pathway mediator TNIK1 in ARID1A mutant tumors, and

themicrotubule-associated kinase and neuroendocrine differen-

tiation markers MAST4 and DCLK1 (Liu et al., 2016) in GATA3

mutant tumors. The first two findings suggest potential thera-

peutic directions in the difficult arena of targeting tumor suppres-

sor loss, whereas DCLK1 inhibition via the small-molecule kinase

inhibitor LRRK2-IN-1 has shown preclinical efficacy in some

cancers (Kawamura et al., 2017; Suehiro et al., 2018; Weygant

et al., 2014). Proteomics and acetylproteomics profiling in the

context of metabolism also revealed, for the first time in a large

BRCA cohort, marked differences in metabolic enzyme expres-

sion and acetylation between luminally- and basally-enriched

subtypes, which may translate to a better understanding of

metabolic vulnerabilities. Suppression of serine metabolic en-

zymes such as PHGDH selectively decreases proliferation in

cells with elevated serine flux (Possemato et al., 2011), opening

a potential therapeutic alternative for difficult-to-treat basal tu-

mors (Mullarky et al., 2019; Murphy et al., 2018; Weinstabl

et al., 2019). Our results suggest a synergistic interaction be-

tween hypoacetylation and elevated protein expression leading

to increased activity of the glycolysis pathway in the NMF

Basal-I subtype; in contrast, mitochondrial function appeared

to be suppressed by hyperacetylation mediated by depleted

SIRT3. Broad dependence of tissues on glucose and products

of respiration suggests that the therapeutic window for targeting

increased aerobic glycolysis or compromised TCA cycle en-

zymes is narrow (Luengo et al., 2017). Nevertheless, the pros-

pect of effective therapeutic targeting of metabolism is predi-

cated on such nuanced insights into the metabolic phenotypes

of specific disease states (Vander Heiden and DeBerardi-

nis, 2017).

There are limitations to this study and to multi-omics resource

studies in general. Investment in prospective sample collection

promoted data quality but meant that the sample population

might not be optimized for subgroup or demographic represen-

tation. Use of cryopulverized bulk tumor material improved the

depth and internal concordance of molecular analysis but sacri-

ficed architectural information and the cellular resolution af-

forded by methods such as imaging mass cytometry (Jackson

et al., 2020). Higher spatial resolution could be achieved by ap-
proaches optimized for smaller amounts of input material (Hunt

et al., 2019; Satpathy et al., 2020) or thoughtful integration of sin-

gle-cell genomics and proteomics. The type of associations

described throughout this manuscript are hypothesis generating

and therefore cannot be understood in terms of firm biological

conclusions or direct evidence of specific therapeutic interven-

tions. Nevertheless, successful integration of deep-scale prote-

omics and post-translational modification (PTM) data from a

large, prospectively collected BRCA sample set represents a

substantial advance over prior genomics studies and an impor-

tant complement to other PG efforts.

Deep PG analyses of high-quality tissues from well-anno-

tated cancer patient cohorts are an important resource for

the clinical and research communities. The future direction of

PG requires full integration of these analytical approaches

into therapeutic trials and, ultimately, clinical care. Most clinical

decision-making is based on core needle biopsies, hence our

emphasis on microscaled workflows that reduce sample re-

quirements in comparison with the surgical specimen-scale an-

alyses described here (Satpathy et al., 2020). Microscaled PG

will also facilitate detection of treatment perturbations that

shed light on mechanisms of response and resistance to ther-

apy. The results of such studies could then be used to develop

candidate lists of peptides and their modifications for targeted,

rapid, mass spectrometry-based assays that could be imple-

mented in the clinic (Gillette and Carr, 2013; Zhang et al.,

2019). Thus, we propose that strategic introduction of PG into

clinical workflows will enable more rapid progress of precision

diagnostics and therapeutics.
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Antibodies

Mouse monoclonal anti-CD8 (C8/144B) Cellmarque Catalog #108M; RRID: AB_1158205-1158210

Rabbit monoclonal anti-CD4 (SP35) Roche Catalog #790-4423; RRID: AB_2335982

Liquid Concentrated Monoclonal Antibody

anti-CD163

Leica Biosystems Catalog #NCL-L-163; RRID: AB_2756375

PTMScan Acetyl-lysine Kit Cell Signaling Technology Catalog: 13416

Biological Samples

Primary tumor samples See Experimental Model

and Subject Details

N/A

Chemicals and Reagents

HPLC-grade water J.T. Baker Catalog: 4218-03

Urea Sigma Catalog: U0631

Sodium chloride Sigma Catalog: 71376

1M Tris, pH 8.0 Invitrogen Catalog: AM9855G

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Aprotinin Sigma Catalog: A6103

Leupeptin Roche Catalog: 11017101001

Phenylmethylsulfonyl fluoride Sigma Catalog: 78830

Sodium fluoride Sigma Catalog: S7920

Phosphatase inhibitor cocktail 2 Sigma Catalog: P5726

Phosphatase inhibitor cocktail 3 Sigma Catalog: P0044

Dithiothretiol, No-Weigh Format Fisher Scientific Catalog: 20291

Iodoacetamide Sigma Catalog: A3221

Lysyl endopeptidase Wako Chemicals Catalog: 129-02541

Sequencing-grade modified trypsin Promega Catalog: V511X

Formic acid Sigma Catalog: F0507

Acetonitrile Honeywell Catalog: 34967

Trifluoroacetic acid Sigma Catalog: 302031

Tandem Mass Tag reagent kit – 10plex ThermoFisher Catalog: 90406

0.5M HEPES, pH 8.5 Alfa Aesar Catalog: J63218

Hydroxylamine solution, 50% (vol/vol) in H2O Aldrich Catalog: 467804

Methanol Honeywell Catalog: 34966

Ammonium hydroxide solution, 28% (wt/vol) in H2O Sigma Catalog: 338818

Ni-NTA agarose beads QIAGEN Catalog: 30410

Iron (III) chloride Sigma Catalog: 451649

Acetic acid, glacial Sigma Catalog: AX0073

Potassium phosphate, monobasic Sigma Catalog: P0662

Potassium phosphate, dibasic Sigma Catalog: P3786

MOPS Sigma Catalog: M5162

Sodium hydroxide VWR Catalog: BDH7225

Sodium phosphate, dibasic Sigma Catalog: S9763

Phosphate-buffered saline Fisher Scientific Catalog: 10010023

iVIEW DAB Detection Kit Roche Catalog: 760-091

(Continued on next page)
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Equipment

Reversed-phase tC18 SepPak, 1cc 100mg Waters Catalog: WATy036820

Solid-phase C18 disk, for Stage-tips Empore Catalog: 66883-U

Stage-tip needle Cadence Catalog: 7928

Stage-tip puncher, PEEK tubing Idex Health & Science Catalog: 1581

PicoFrit LC-MS column New Objective Catalog: PF360-75-10-N-5

ReproSil-Pur, 120 Å, C18-AQ, 1.9-mm resin Dr. Maisch Catalog: r119.aq

Nanospray column heater Phoenix S&T Catalog: PST-CH-20U

Column heater controller Phoenix S&T Catalog: PST-CHC

300 mL LC-MS autosampler vial and cap Waters Catalog: 186002639

Offline HPLC column, 3.5-mm particle size,

4.6 um 3 250 mm

Agilent Catalog: Custom order

Offline 96-well fractionation plate Whatman Catalog: 77015200

700 mL bRP fractionation autosampler vial ThermoFisher Catalog: C4010-14

700 mL bRP fractionation autosampler cap ThermoFisher Catalog: C4010-55A

96-well microplate for BCA Greiner Catalog: 655101

Microplate foil cover Corning Catalog: PCR-AS-200

Vacuum centrifuge ThermoFisher Catalog: SPD121P-115

Centrifuge Eppendorf Catalog: 5427 R

Benchtop mini centrifuge Corning Catalog: 6765

Benchtop vortex Scientific Industries Catalog: SI-0236

Incubating shaker VWR Catalog: 12620-942

15 mL centrifuge tube Corning Catalog: 352097

50 mL centrifuge tube Corning Catalog: 352070

1.5 mL microtube w/o cap Sarstedt Catalog: 72.607

2.0 mL microtube w/o cap Sarstedt Catalog: 72.608

Microtube caps Sarstedt Catalog: 72.692

1.5 mL snapcap tube ThermoFisher Catalog: AM12450

2.0 mL snapcap tube ThermoFisher Catalog: AM12475

Instrumentation

Microplate Reader Molecular Devices Catalog: M2

Offline HPLC System for bRP fractionation Agilent Catalog: G1380-90000

Online LC for LC-MS ThermoFisher Catalog: LC140

Q Exactive Plus Mass Spectrometer ThermoFisher Catalog: IQLAAEGA APFALGMBDK

Orbitrap Fusion Lumos Tribrid Mass Spectrometer ThermoFisher Catalog: IQLAAEGA APFADBMBHQ

Critical Commercial Assays

TruSeq Stranded Total RNA Library Prep Kit

with Ribo-Zero Gold

Illumina Catalog: RS-122-2301

Infinium MethylationEPIC Kit Illumina Catalog: WG-317-1003

Nextera DNA Exosome Kit Illumina Catalog: 20020617

KAPA Hyper Prep Kit, PCR-free Roche Catalog: 07962371001

BCA Protein Assay Kit ThermoFisher Catalog: 23225

Deposited Data

Proteomics data CPTAC Data Portal (https://cptac-

data-portal.georgetown.edu)

https://cptac-data-portal.georgetown.

edu/study-summary/S060

Proteomics data Proteomic Data Commons

(https://pdc.cancer.gov)

PDC000120

Genomics data dbGaP phs000892

(Continued on next page)
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Software and Algorithms

Terra Broad Institute data

science platform.

https://terra.bio/

ContEst Cibulskis et al., 2011 https://software.broadinstitute.org/cancer/cga/

contest

MuTect Cibulskis et al., 2013 https://software.broadinstitute.org/cancer/cga/

mutect

Strelka Kim et al., 2018 https://github.com/Illumina/strelka

AllelicCapSeg https://github.com/aaronmck/CapSeg

ABSOLUTE Carter et al., 2012 https://software.broadinstitute.org/cancer/cga/

absolute

deTiN Taylor-Weiner et al., 2018 https://github.com/getzlab/deTiN

GATK4 McKenna et al., 2010 https://gatk.broadinstitute.org/hc/en-us

Oncotator Ramos et al., 2015 https://software.broadinstitute.org/cancer/cga/

oncotator

The Ensembl Variant Effect Predictor McLaren et al., 2016 http://useast.ensembl.org//uswest.ensembl.org/

info/docs/tools/vep/index.html?redirectsrc=//

useast.ensembl.org%2Finfo%2Fdocs%2Ftools

%2Fvep%2Findex.html

HaplotypeCaller Poplin et al., 2017 https://gatk.broadinstitute.org/hc/en-us/articles/

360037225632-HaplotypeCaller

Cufflinks Trapnell et al., 2010 http://cole-trapnell-lab.github.io/cufflinks/

GISTIC2.0 Mermel et al., 2011 http://portals.broadinstitute.org/cgi-bin/cancer/

publications/pub_paper.cgi?mode=

view&paper_id=216&p=t

MutSig2CV Lawrence et al., 2014 https://software.broadinstitute.org/cancer/

cga/msp

SignatureAnalyzer Kim et al., 2016 https://software.broadinstitute.org/cancer/cga/

COSMIC Tate et al., 2019 https://cancer.sanger.ac.uk/cosmic

deconstructSigs (R-package) Rosenthal et al., 2016 https://cran.r-project.org/web/packages/

deconstructSigs/

Maftool (R-package) Mayakonda et al., 2018 https://bioconductor.org/packages/release/bioc/

html/maftools.html

Spectrum Mill software package v7.0 Agilent Technologies, Santa

Clara, CA

https://proteomics.broadinstitute.org/

CMap Lamb et al., 2006; Subramanian

et al., 2017

https://clue.io/cmap

QUILTS v3.0 Ruggles et al., 2015 http://openslice.fenyolab.org/cgi-bin/

pyquilts_cgi.pl

PTM-SEA Krug et al., 2019 https://github.com/broadinstitute/ssGSEA2.0

Protigy Broad Institute, Proteomics

Platform

https://github.com/broadinstitute/protigy

Reactome Fabregat et al., 2018 https://reactome.org/

COMPARTMENTS Binder et al., 2014 https://compartments.jensenlab.org/Search

Blacksheep Ruggles/Fenyo lab https://www.biorxiv.org/content/10.1101/

825067v2, https://github.com/ruggleslab/

blackSheep, https://github.com/ruggleslab/

blackSheepr

NMF (R-package) Gaujoux and Seoighe, 2010 https://cran.r-project.org/web/packages/NMF/

index.html

TCGAbiolinks Colaprico et al., 2016 https://bioconductor.org/packages/release/bioc/

html/TCGAbiolinks.html

(Continued on next page)
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LinkedOmics Vasaikar et al., 2018 http://www.linkedomics.orglogin.php

WebGestalt Liao et al., 2019 http://www.webgestalt.org/

MoonlightR Colaprico et al., 2020 https://bioconductor.org/packages/release/bioc/

html/MoonlightR.html

Cibersort Newman et al., 2015 https://cibersort.stanford.edu/

xCell Aran et al., 2017 https://xcell.ucsf.edu/

ESTIMATE (R-package) Yoshihara et al., 2013 https://bioinformatics.mdanderson.org/estimate/

rpackage.html
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RESOURCE AVAILABILITY

Lead Contact
This study did not generate new unique reagents. Further information and requests should be directed to and will be fulfilled by the

lead author, Michael A. Gillette (gillette@broadinstitute.org).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Proteomics raw and characterized datasets are publicly available though the CPTAC data portal https://cptac-data-portal.

georgetown.edu/study-summary/S060 and at the Proteomic Data Commons (https://pdc.cancer.gov/pdc/). The accession number

for the proteomic data at the CPTAC data portal is S060. The accession number for the proteomic data characterized by the Prote-

omic Data Commons is PDC: PDC000120. The proteomics raw data consists of 17 plexes. Plexes 1-13 and 16-17 are tumor-only

plexes and 14-15 are normal adjacent tissue (NAT)-only plexes. Results reported in this study are solely based on tumor-only plexes.

Raw genomic data (WES, RNA-seq, miRNA-seq,) associated with this study (harmonized with the GRCh38 reference genome) has

been released at the Genomic Data Commons (https://gdc.cancer.gov) and is accessible via the database of Genotypes and Phe-

notypes (dbGaP). The accession number for the raw genomics data (WES, RNA-seq, miRNA-seq,) reported in this paper is dbGaP:

phs000892.

Sample annotation, processed and normalized data files are provided in Tables S1 and S2. In addition, all processed datamatrices

will be available at LinkedOmics (Vasaikar et al., 2018) (http://www.linkedomics.orglogin.php) upon publication, where computational

tools are available for further exploration of this dataset.

A website for interactive visualization of the multi-omics dataset is available at: http://prot-shiny-vm.broadinstitute.org:3838/

CPTAC-BRCA2020. The heatmap depicts somatic copy number aberrations, mRNA, protein, phosphosite and acetylsite abun-

dances across 122 tumors. Copy number alterations are relative to matched normal blood samples and are on log2(CNA)-1 scale.

For other data types the heatmap depicts abundances relative to the common reference (proteomics) or the median abundance

across all tumors (RNA-seq).

The entire workflow described under ‘Multi-omics clustering’ has been implemented as a module for Broad’s cloud platform Terra

(https://app.terra.bio/). The docker containers encapsulating the source code and required R-packages for NMF clustering and

ssGSEA have been submitted to Dockerhub (broadcptac/pgdac_mo_nmf:9, broadcptac/pgdac_ssgsea:5). The source code for

ssGSEA and PTM-SEA is available on GitHub: https://github.com/broadinstitute/ssGSEA2.0.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
A total of 134 participants were included in the study. Histopathologically-defined adult breast tumors from newly diagnosed patients

were considered for analysis. The cohort ranged in age from 30-95. Institutional review boards at tissue source sites reviewed pro-

tocols and consent documentation adhering to the Clinical Proteomic Tumor Analysis Consortium (CPTAC) guidelines.

METHOD DETAILS

Specimens and clinical data
Tumor, adjacent normal, and blood samples were collected by several tissue source sites in strict accordance with the CPTAC2

breast procurement protocol (https://brd.nci.nih.gov/brd/sop/download-pdf/301). All patients provided written informed consent.

Inclusion criteria included newly diagnosed, untreated patients undergoing definitive surgery for breast cancer (stage IIA-IIIC) or
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undergoing core needle biopsy at the time of placement of a vascular access device prior to neoadjuvant therapy for breast cancer.

Patients with more than one newly detected and independent breast masses were allowed. Cases with prior history of other malig-

nancieswithin the past 12monthswere excluded. Cases with any prior systemic chemotherapy, endocrine therapy or biological ther-

apy for any cancer, or prior history of radiation therapy involving the breast such as mantle field radiation for Hodgkins Disease or

radiotherapy for lung cancer, were excluded. Patients who were found to have a diagnosis other than invasive breast cancer as a

result of the surgery were also excluded. Peripheral venous blood samples from each patient were collected prior to administration

of anesthesia. Samples were qualified for the study if two or more tumor tissue core biopsies or surgical resection segments had a

minimum mass of 200 mg and demonstrated greater than 60% tumor cell nuclei and less than 20% tumor necrosis on frozen tissue

section review.

To ensure tissue suitability for phosphoprotein analysis, the tumor and normal adjacent tissue specimens were collected in less

than 30 minutes total ischemic time from interruption of the vascular supply and embedded in optimal cutting temperature (OCT)

compound for processing at a common CPTAC-2 specimen core resource center. Pathologically qualified cases underwent further

molecular qualification for extraction and co-isolation of nucleic acids. Tissue segments that were qualified both for pathology and for

molecular integrity were shipped to the proteomic characterization centers. DNA and RNA from the same tumor segment and DNA

from germline blood were further aliquoted and quantified per protocol. DNA quality was confirmed using gel electrophoresis and

Nanodropmethods. RNA quality was confirmed using Nanodrop and Agilent bioanalyzer. Sufficient yield, a good gel score and pass-

ing value of 7 or greater RNA Integrity Number (RIN) qualified the DNA and RNA, respectively, for sequencing. The analytes were then

shipped to the sequencing center.

Patient history, procedural details, and other relevant clinical and diagnostic information were collected using case report forms.

The corresponding clinical data were formatted and distributed through the CPTAC data coordinating center (https://

cptac-data-portal.georgetown.edu/study-summary/S039). One year follow-up forms captured updated histories after completion

of the initial treatment regimen. Deidentified Pathology Reports (AJCC 7th edition 2013) including ER (estrogen receptor), PGR (pro-

gesterone receptor), and HER2 (ERBB2) status and representative diagnostic slide images were utilized to review and qualify cases

for this study. Final clinical assessment of hormone receptor status by IHC and FISH classified tumors as follows: ER and/or PR pos-

itive: 83; HER2 positive: 13; ER/PR/HER2 negative: 16; ER/PR negative with equivocal or unknown HER2 status: 12. PAM50-based

classification of tumors was also performed (Parker et al., 2009), confirming that available samples represented all major subtypes,

including 14 Her2 enriched (HER2-E), 29 Basal, 57 Luminal A (LumA), 17 Luminal B (LumB) and 5 Normal-like tumors (Table S1). To

support ERBB2-focused analyses, additional, centralized HER2 IHC was performed on sections from 68 tumors for which remaining

tissue was available. ERBB2 clinical status was defined using a combination of the updated ERBB2 IHC scores where available (orig-

inal IHC scores from the pathology reports were used for samples for which additional tissue was not available) and ERBB2 fluores-

cence in situ hybridization (FISH) results from the pathology reports. Samples were classified in amanner consistent with ASCO-CAP

guidelines (https://www.cap.org/); specifically, clinical ERBB2 negative cases were those where the IHC score was 0 or 1+ or FISH

was negative, clinical ERBB2 positive cases were those where the IHC score was 3+ and FISH was positive or not available or where

the IHC score was 2+ and FISH was positive, and equivocal cases were those with IHC score of 2+ that lacked FISH confirmation or

had a positive FISH result without IHC confirmation (ASCO guidelines require further testing for these equivocal cases, but this was

not possible here). Central staining for ER was consistent with ER status from the pathology reports. Triple negative breast cancer

(TNBC) status was classified using the clinical status for ER and PR from IHC and the ERBB2 proteogenomic (PG) status applied to all

samples as described below. Samples that were positive for any of these markers were classified as TNBC negative whereas sam-

ples that were negative for all three were classified as TNBC positive (samples that weremissing classification for ER or PR but nega-

tive for all other markers were classified as NA because clinical status of all 3 markers could not be assessed). The known propensity

of TNBC to affect patients with African ancestry (Dietze et al., 2015) was observed in the present dataset (p = 0.0009 versus Cauca-

sian, Fisher’s exact test).

Centralized Immunohistochemistry
For immunohistochemistry (IHC) cut tissue sections (5mm) on charged glass slides were baked for 10-12 hours at 58�C in a dry slide

incubator, deparaffinized in xylene and rehydrated via an ethanol step gradient. Heat-induced antigen retrieval steps were performed

at pH 9.0 for all targets. All primary antibodies were incubated at room temperature for 1 hour [clone, manufacturer, dilution: Her2

(SP3, Neomarkers, 1:100); ER (6F11, Leica, 1:200); CD3 (polyclonal, Dako, 1:100)] followed by a standard chromogenic staining pro-

tocol with the Envision Polymer-HRP anti-mouse/3,30diaminobenzidine (DAB, Dako) process. Slides were counterstained in Harris

hematoxylin. Immunohistochemistry scoring was performed using established guidelines, when appropriate. All IHC results were

evaluated against positive and negative tissue controls.

Sequencing Sample preparation
Whole exome sequencing (WES)

Genomic DNA samples were used to prepare indexed libraries using the Nextera Rapid Capture Exome kit from Illumina. Library

preparation was performed using a semi-automated 96-well plate method, with washing and clean-up/concentration steps per-

formed on the Beckman Coulter Biomek NXP platform and with ZR-96 DNA Clean & Concentrator-5 plates, respectively. Libraries

were quantified using the Agilent 2100 Bioanalyzer. Pooled libraries were run on HiSeq4000 (2x150 paired end runs) to achieve a
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minimum of 150x on-target coverage per sample library. The raw Illumina sequence data was demultiplexed and converted to fastq

files, and adaptor and low-quality sequences were trimmed.WES data was used for somatic mutation detection, microsatellite insta-

bility prediction, and somatic copy number alteration (SCNA) analysis as described below.

mRNA sequencing

Indexed cDNA sequencing libraries were prepared from the RNA samples using the TruSeq Stranded RNA Sample Preparation Kit

and bar-coded with individual tags. Library preparation was performed similarly to the WES. Quality control was performed at every

step, and the libraries were quantified using the Agilent 2100 Bioanalyzer. Indexed libraries were prepared as equimolar pools and run

on HiSeq4000 (2x150 paired end runs) to generate a minimum of 30 million paired-end reads per sample library. The raw Illumina

sequence data was demultiplexed and converted to fastq files, and adaptor and low-quality sequences were trimmed.

Proteomic analysis
The proteomic, phosphoproteomic, and acetylproteomic analyses of breast cancer samples were structured as TMT-10-plex exper-

iments. To facilitate quantitative comparison between all samples across experiments, a tumor-only common reference sample was

included in each 10-plex. A common physical, rather than in silico reference was used for this purpose for optimal quantitative pre-

cision between TMT-10 experiments. 125 unique samples representing 122 tumors and three process replicates were distributed

among 15 10-plex experiments. Eighteen normal adjacent samples were also included in two additional 10-plex experiments, for

a total of 17 10-plex experiments. For each experiment, nine individual samples occupied the first nine channels and the 10th channel

was reserved for the tumor-only reference sample (Figure S1B). To avoid systematic bias in sample processing or missing values in

detection across the experiments, samples underwent stratified randomization before processing, with each intrinsic subtype pro-

portionally represented in each processing tranche and subsequent incorporation to each 10-plex (Table S1). Longitudinal quality

control of the process was tested by periodic analysis of full process replicates of a comparative reference (CompRef; Mertins

et al., 2018) sample composed of a basal and a luminal patient-derived xenograft tumor. Four interstitial CompRef experiments

were performed, before plex one and after plexes five, 10, and 17. The protocols below for protein extraction, tryptic digestion,

TMT-10 labeling of peptides, peptide fractionation by basic reversed-phase liquid chromatography, phosphopeptide enrichment us-

ing immobilized metal affinity chromatography, and LC-MS/MS were performed as previously described in depth (Mertins

et al., 2018).

Common reference pool construction

Considerations informing generation of the common reference sample were that it needed to be available at the onset of discovery

work, of adequate quantity to cover all planned experiments with overhead for additional possible experiments, and broadly repre-

sentative of the population of breast cancer samples in the overall sample cohort. To ensure capacity for additional samples or ex-

periments given a target input of 400 ug protein per channel per experiment, 12mg total was targeted for referencematerial. Tomeet

these collective requirements, 40 samples with an average of 2.7 mg total protein yield were selected based on hormone receptor

status, including 9 triple negative, 12 HER2 positive, and 19 estrogen receptor positive specimens. After reserving 400 ug protein /

sample for individual sample analysis, an additional amount of 300 ug for each of the 40 samples was pooled. The resulting 12 mg of

pooled reference material was divided into 400 ug aliquots and frozen at �80�C until use.

Making the internal reference representative of the study as a whole was particularly important since by definition only analytes

represented in the reference sample would be included in the final ratio-based data analyses. To accomplish this goal, similar per-

centages found in the total sample population of specific subtypes were implemented in the internal reference. As noted, samples

were selected on this basis of hormone receptor status, as PAM50 status was not available at the time of reference preparation; how-

ever, of the 40 samples included in the internal reference, 11 were subsequently shown to be basal, 7 were HER2+, 12 were Luminal

A, 8 were Luminal B, 1 was normal-like, and 1 was not determined.

Protein extraction and digestion

Cryopulverized human breast cancer patient tumor samples were homogenized in lysis buffer at a ratio of 750 uL lysis buffer for every

100-125 mg wet weight tissue. The lysis buffer consisted of 8 M urea, 75 mM NaCl, 1mM EDTA, 50 mM Tris HCl (pH 8), 10 mM NaF,

phosphatase inhibitor cocktail 2 (1:100; Sigma, P5726) and cocktail 3 (1:100; Sigma, P0044), 2 mg/mL aprotinin (Sigma, A6103),

10 mg/mL Leupeptin (Roche, 11017101001), and 1 mM PMSF (Sigma, 78830). Lysates were centrifuged at 20,000 g for 10 minutes

and protein concentrations of the clarified lysates weremeasured by BCA assay (Pierce). Protein lysates were subsequently reduced

with 5 mM dithiothreitol (Thermo Scientific, 20291) for 45 minutes at room temperature and alkylated with 10 mM iodoacetamide

(Sigma, A3221) for 45 minutes in the dark. Prior to digestion, samples were diluted 4-fold to achieve 2 M urea with 50mM Tris HCl

(pH 8). Digestion was performed with LysC (Wako, 100369-826) for 2 hours and with trypsin (Promega, V511X) overnight, both at

a 1:50 enzyme-to-protein ratio and at room temperature. Digested samples were acidified with formic acid (FA; Fluka, 56302) to

achieve a final volumetric concentration of 1% (final pH of �3), and centrifuged at 1,500 g for 15 minutes to clear precipitated

urea from peptide lysates. Samples were desalted on C18 SepPak columns (Waters, 100mg, WAT036820) and dried down using

a SpeedVac apparatus.

TMT-10 labeling of peptides

400 ug of desalted peptides per sample (based on protein-level BCA prior to digestion) were labeled with 10-plex TMT reagents ac-

cording to themanufacturer’s instructions (Thermo Scientific; Pierce Biotechnology, Germany). For each 400 ug peptide aliquot of an

individual breast tumor sample, 3.2 mg of labeling reagent was used. Peptides were dissolved in 400 mL of 50 mM HEPES (pH 8.5)
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solution and labeling reagent was added in 164 mL of acetonitrile. After 1 h incubation with shaking and after confirming good label

incorporation, 32 uL of 5% hydroxylamine was added to quench the unreacted TMT reagents. Good label incorporation was defined

as having a minimum of 95% fully labeled MS/MS spectra in each sample, as measured by LC-MS/MS after taking out a 2 mg aliquot

from each sample and analyzing 1mg. If a sample did not have sufficient label incorporation, additional TMTwas added to the sample

and another 1 h incubation was performed with shaking. At the time that the labeling efficiency quality control samples were taken

out, an additional 2 mg of material from each sample was taken out and combined as a mixing control. After analyzing the mixing

control sample by LC-MS/MS, intensity values of the individual TMT reporter ions were summed across all peptide spectrum

matches and compared to ensure that the total reporter ion intensity of each sample met a threshold of ± 25% of the internal refer-

ence. If necessary, adjustments were made by either labeling additional material or reducing an individual sample’s contribution to

themixture, and analyzing a subsequent mixing control, until all samplesmet the threshold andwere thus approximately 1:1:1. Differ-

entially labeled peptides were thenmixed (103 400 ug) and dried down via vacuum centrifuge, and the quenched, combined sample

was subsequently desalted on a 500 mg C18 SepPak column.

Peptide fractionation

To reduce sample complexity, peptide samples were separated by high pH reversed-phase (RP) chromatography as described pre-

viously. A desalted 4mg, 10-plex TMT-labeled experiment (based on protein-level BCA prior to digestion) was reconstituted in 900 mL

0.0455% ammonium formate (pH 10) and 2% acetonitrile, loaded on a 4.6 mm x 250 mm column RP Zorbax 300 A Extend-C18 col-

umn (Agilent, 3.5 mm bead size), and separated on an Agilent 1100 Series HPLC instrument using basic pH reversed-phase chroma-

tography. Solvent A (2% acetonitrile, 4.4 mM ammonium formate, pH 10) and a nonlinear increasing concentration of solvent B (90%

acetonitrile, 4.5 mM ammonium formate, pH 10) were used to separate peptides. The 4.5 mM ammonium formate solvents were

made by 40–fold dilution of a stock solution of 180 mM ammonium formate, pH 10. To make 200 mL of stock solution, slowly

add 4.6 mL of 30% (wt/vol) ammonium hydroxide (Ammonia solution 28.0%–30.0% (NH3 basis) ACS, 0.9 g/ml, Fluka) to �150mL

of HPLC grade water, then titrate to pH 10.0 with �9.0 mL of concentrated formic acid (> 95% Sigma-Aldrich); bring to final volume

of 200mLwith HPLC grade water. The 96minute separation LC gradient followed this profile: (min:%B) 0:0; 7:0; 13:16; 73:40; 77:44;

82:60; 96:60. The flow rate was 1mL/min. For each 4mg separation, 77 fractions were collected into a 96 deep-well 2mL plate (What-

man, #7701- 5200), with fractions combined in a stepwise concatenation strategy and acidified to a final concentration of 0.1%FA as

reported previously. An additional 12 fractionswere collected from the 96 deep-well plate for fraction A, representing the early-eluting

fractions that tend to contain multi-phosphorylated peptides. 5%of the volume of each of the 24+A proteome fractions was allocated

for proteome analysis, dried down, and re-suspended in 3% MeCN/0.1% FA (MeCN; acetonitrile) to a peptide concentration of

0.5 mg/uL for LC-MS/MS analysis. The remaining 95% of 24 concatenated fractions were further combined into 12 fractions, with

fraction A as a separate fraction. These 13 fractions were then enriched for phosphopeptides as described below.

Phosphopeptide enrichment

Ni-NTA agarose beadswere used to prepare Fe3+-NTA agarose beads. In each phosphoproteome fraction,�317 mg peptides (based

on protein-level BCA prior to digestion, with uniform distribution across fractions presumed) was reconstituted in 633 mL 80%MeCN/

0.1%TFA (trifluoroacetic acid) solvent and incubatedwith 10 mL of the IMAC beads for 30minutes on a shaker at RT. After incubation,

samples were briefly spun down on a tabletop centrifuge; clarified peptide flow-throughs were separated from the beads; and the

beads were reconstituted in 200 mL IMAC binding/wash buffer (80 MeCN/0.1% TFA) and loaded onto equilibrated Empore C18 sil-

ica-packed stage tips (3M, 2315). Samples were then washed twice with 50 mL of IMAC binding/wash buffer and once with 50 uL 1%

FA, and were eluted from the IMAC beads to the stage tips with 3 3 70 uL washes of 500 mM dibasic sodium phosphate (pH 7.0,

Sigma S9763). Stage tips were then washed once with 100 mL 1% FA and phosphopeptides were eluted from the stage tips with

60 uL 50%MeCN/0.1% FA. Phosphopeptides were dried down and resuspended in 9 mL 50%MeCN/0.1%FA for LC-MS/MS anal-

ysis, with 4 mL injected per run.

Acetylpeptide enrichment

Acetylated lysine peptides were enriched using an antibody against the Acetyl-Lysine motif (CST PTM-SCAN Catalogue No. 13416)

as described before (Gillette et al., 2020; Udeshi et al., 2020). IMAC eluents were concatenated into 6 fractions (�330 mg peptides per

fraction) and dried down using a SpeedVac apparatus. Peptides were reconstituted with 1.4ml of IAP buffer (5 mM MOPS pH 7.2,

1 mM Sodium Phosphate (dibasic), 5 mM NaCl) per fraction and incubated for 2 hours at 4�C with pre-washed (4 times with IAP

buffer) agarose beads bound to acetyl-lysine motif antibody. Peptide-bound beads were washed 4 times with ice-cold PBS followed

by elution with 100ul of 0.15% TFA. Eluents were desalted using C18 stage-tips, eluted with 50% ACN and dried down. Acetylpep-

tides were suspended in 7ul of 0.1% FA and 3% ACN, with 4ul injected per run.

LC-MS/MS for proteomic analysis
Liquid chromatography

Online separationwas donewith a nanoflowProxeon EASY-nLC 1200UHPLC system (Thermo Fisher Scientific). In this set up, the LC

system, column, and platinum wire used to deliver electrospray source voltage were connected via a stainless-steel cross (360 mm,

IDEX Health & Science, UH-906x). The column was heated to 50�C using a column heater sleeve (Phoenix-ST) to prevent over-pres-

suring of columns during UHPLC separation. Each peptide fraction containing �1ug (based on protein-level BCA prior to digestion,

with uniform distribution of fraction content presumed), the equivalent of 12% of each global proteome sample in a 2 ul injection vol-

ume or 50% of each phosphoproteome sample in a 4 ul injection volume, was injected onto an in-house packed 20cm x 75um
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diameter C18 silica picofrit capillary column (1.9 mmReproSil-Pur C18-AQ beads, Dr. Maisch GmbH, r119.aq; Picofrit 10um tip open-

ing, New Objective, PF360-75-10-N-5). Mobile phase flow rate was 200 nL/min, comprising 3% acetonitrile/0.1% formic acid (Sol-

vent A) and 90% acetonitrile/0.1% formic acid (Solvent B). The 110-minute LC-MS/MSmethod consisted of a 10-min column-equil-

ibration procedure, a 20-min sample-loading procedure, and the following gradient profile: (min:%B) 0:2; 1:6; 85:30; 94:60; 95;90;

100:90; 101:50; 110:50 (the last two steps at 500 nL/min flow rate).

Mass spectrometry

Samples were analyzed with a benchtop Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) equipped with a

NanoSpray Flex NG ion source. Data-dependent acquisition was performed using Xcalibur QExactive v2.1 software in positive

ion mode at a spray voltage of 1.8 kV. MS1 spectra were measured with a resolution of 60,000, an AGC target of 4e5 and a mass

range from 350 to 1800 m/z. The data-dependent mode cycle time was set at 2 s with an MS2 resolution of 50,000, an AGC target

of 1e5, an isolation window of 0.7 m/z, a maximum injection time of 105 msec, and an HCD collision energy of 38%. Peptide mode

was selected for monoisotopic peak determination, and charge state screening was enabled to only include precursor charge states

2-6, with an intensity threshold of 1e4. Peptides that triggered MS/MS scans were dynamically excluded from further MS/MS scans

for 45 s, with a ± 10 ppm mass tolerance. ‘‘Perform dependent scan on single charge state per precursor only’’ was enabled.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genomic data analysis
Somatic mutation and copy number detection

WES data were analyzed on the Terra cloud-based analysis platform (https://terra.bio/).

Somatic mutations were detected using the Cancer Genome Analysis WES Characterization Pipeline (available on Terra - https://

portal.firecloud.org/?return=terra#methods/getzlab/CGA_WES_Characterization_Pipeline_v0.1_Dec2018/2). This pipeline is the

Getz Lab’s standard computational workflow for characterizing a tumor sample’s somatic variants through contrastive computa-

tional analysis of matched tumor-normal WES BAMs. The pipeline includes state-of-the-art tools for quality control (QC) and char-

acterization of paired (tumor/normal) whole exome sequencing data. The pipeline is organized into five modules: (1) DNA Sequence

DataQuality Control such asContEst for detecting cross-patient contamination (Cibulskis et al., 2011), (2) Variant Discovery including

MuTect for detection of somatic single nucleotide variants (Cibulskis et al., 2013) and Strelka for detecting small insertions and de-

letions (Kim et al., 2018), (3) Copy Number Characterization employing AllelicCapSeg for assessing allele-specific copy-number al-

terations and ABSOLUTE for estimating tumor purity, ploidy, absolute allelic copy number and Cancer Cell Fraction (CCFs) (Carter

et al., 2012), (4) Variant rescue, Annotation and Filtering including deTiN, which estimates potential tumor-in-normal contamination

(Taylor-Weiner et al., 2018), and (5) Visualization. Each of these modules consists of multiple additional tools (McLaren et al., 2016;

Ramos et al., 2015). Note that we conducted our analysis on hg19, requiring replacing the hg38 reference file inputs with their hg19

analogs.

TheMAF Panel of Normals (PoN) Filter is a methodwithin the Variant rescue, Annotation and Filtering module. It is a highly effective

tool for filtering false-positive germline variants and common artifacts from somatic mutation calls. This tool requires as input a Panel

of Normals (PoN) constructed from a collection derived from BAMs of normal samples. To be effective at filtering artifacts, the library

preparation and sequencing technology used for the PoN’s normal samples shouldmirror that used in the processing of thematched

tumor/normal pairs within the study cohort. For this analysis, we used a TCGA-based PoN and an ICE PoN.

Germline short variant discovery from WES

Germline mutations were also analyzed on the Terra cloud-based analysis platform utilizing the GATK4 SNPS + Indels best practice

workflow (https://gatk.broadinstitute.org?id=11145) (McKenna et al., 2010). This workflow consists of three sub-workflows: (i)

Processing-For-Variant-Discovery workflow, which takes a single sample’s sequencing data in unmapped BAM (uBAM) format

and outputs a clean BAM file and its index, suitable for variant discovery analysis, (ii) Haplotypecaller-GVCF workflow, which runs

the HaplotypeCaller tool (Poplin et al., 2017) from GATK4 in GVCF mode on the BAM and BAI created in the previous step, and

(iii) Joint-Discovery workflow, which conducts the joint-calling and VQSR-filtering portions of the GATK Best Practices for germline

SNP and Indel discovery. In our analysis, Processing-For-Variant-Discovery was skipped, as our WES pipeline produced BAM files

compatible for the next step of analysis and an Illumina-compatible interval list was used. Details regarding the specific Terra work-

flows used to conduct this analysis can be found in the public workspace (https://app.terra.bio/#workspaces/help-gatk/

Germline-SNPs-Indels-GATK4-hg38). Note that we conducted our analysis on hg19, requiring replacing the hg38 reference file in-

puts with their hg19 analogs.

RNA quantification

The raw Illumina sequence data from HiSeq4000 was demultiplexed and converted to .fastq files. Read quality was examined using

FastQC (version 0.10.1) and adaptor and low quality sequences were trimmed using Trim Galore (version 0.3.3) using a quality score

cutoff of Q < 30 and Length < 50 bp.. Trimmed reads were mapped to the hg19 reference genome using MapSplice (version 2.1.8).

Transcripts were assembled and RNA expressions were quantified in Fragments Per Kilobase of transcript per Million mapped reads

(FPKM) using Cufflinks (v2.1.1) (Trapnell et al., 2010) and transcript coveragewas calculated using (bedtools version 2.20.1). Relevant

QCmetrics and statistics can be found in Table S1B. Derived datamatrix of FPKM valueswas further processed in R. FPKM values of

transcripts mapping to the same HGNC symbol were averaged within a sample to create a gene-centric data matrix. FPKM values of
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0 were considered asmissing values and replaced by NA before applying log2 transformation. For integrative multi-omics subtyping,

we first normalized each gene by the median log2(FPKM) across all tumors (gene-centering) before applying a robustified z-score

transformation (median-centered, MAD-scaled) per sample.

GISTIC and MutSig analysis

Genomic Identification of Significant Targets in Cancer (GISTIC2.0) algorithm (Mermel et al., 2011) was used to identify significantly

amplified or deleted focal-level and arm-level events, with q values smaller than 0.25 considered significant. The following parame-

ters were used:

C Amplification Threshold = 0.1

C Deletion Threshold = - 0.1

C Cap Values = 1.5

C Broad Length Cutoff = 0.98

C Remove X-Chromosome = 0

C Confidence Level = 0.99

C Join Segment Size = 4

C Arm Level Peel-Off = 1

C Maximum Sample Segments = 2000

C Gene GISTIC = 1

Each gene of every sample is assigned a thresholded copy number level that reflects the magnitude of its deletion or amplification.

These are integer values ranging from �2 to 2, where 0 means no amplification or deletion of magnitude greater than the threshold

parameters described above. Amplifications are represented by positive numbers: 1 means amplification above the amplification

threshold; 2 means amplification larger than the arm level amplifications observed in the sample. Deletions are represented by nega-

tive numbers: �1 means deletion beyond the threshold; �2 means deletions greater than the minimum arm-level copy number

observed in the sample.

The somatic variants were filtered through a panel of normals to remove potential sequencing artifacts and undetected germline

variants (see ‘‘Somatic Mutation and Copy Number Detection’’). MutSig2CV (Lawrence et al., 2014) was run on these filtered results

to evaluate the significance of mutated genes and estimate mutation densities of samples. These results were constrained to genes

given in (Nik-Zainal et al., 2016), with false discovery rates (q values) recalculated. Genes of q value < 0.1 were declared significant.

De novo mutational signature extraction

For results reported in Figure 2A, non-negative matrix factorization algorithm (NMF) was used to decipher de novo mutation signa-

tures in cancer somatic mutations stratified by 96 base substitutions in tri-nucleotide sequence contexts. To obtain a reliable signa-

ture profile, we used somaticwrapper to call mutations from WGS data (https://github.com/ding-lab/somaticwrapper). SignatureA-

nalyzer exploited the Bayesian variant of the NMF algorithm and enabled an inference for the optimal number of signatures from the

data itself at a balance between data fidelity (likelihood) andmodel complexity (regularization) (Kasar et al., 2015; Kim et al., 2016; Tan

and Févotte, 2013). After decomposing into signatures, the inferred signatures were compared against known signatures derived

from COSMIC (Tate et al., 2019) and cosine similarity was calculated to identify the best match.

Mutational signature projection (used in Figure 5B and Figure S7D)

For results reported in Figure 5B and Figure S7D, parallel approach based COSMIC signature scores for every sample were esti-

mated using deconstructSigs (Rosenthal et al., 2016) package in R. In addition toCOSMIC signatures SBS 2 and 13, APOBEC enrich-

ment was also assessed using TrinucleotideMatrix and plotApobecDiff functions of the maftool package (Mayakonda et al., 2018).

APOBEC enrichment scores greater than four were used to identify high confidence APOBEC-enriched cases.

Proteomics data analysis
Spectrum quality filtering and database searching

All MS data were interpreted using the SpectrumMill software package v7.0 pre-release (Agilent Technologies, Santa Clara, CA) co-

developed by Karl Clauser of the Carr laboratory (https://www.broadinstitute.org/proteomics). Similar MS/MS spectra acquired on

the same precursorm/z within ± 40 sweremerged. MS/MS spectra were excluded from searching if they failed the quality filter by not

having a sequence tag length > 0 (i.e., minimum of two masses separated by the in-chain mass of an amino acid) or did not have a

precursor MH+ in the range of 800-6000. MS/MS spectra were searched against a RefSeq-based sequence database containing

37,579 proteins mapped to the human reference genome (hg19) obtained via the UCSC Table Browser (https://genome.ucsc.

edu/cgi-bin/hgTables) on September 14, 2016, with the addition of 13 proteins encoded in the human mitochondrial genome, 150

common laboratory contaminant proteins, and 553 non-canonical small open reading frames (38,295 total sequences). Scoring pa-

rameters were ESI-QEXACTIVE-HCD-v2, for whole proteome datasets, and ESI-QEXACTIVE-HCD-v3, for phosphoproteome data-

sets. All spectra were allowed ± 20 ppmmass tolerance for precursor and product ions, 30%minimummatched peak intensity, and

‘‘trypsin allow P’’ enzyme specificity with up to 4 missed cleavages. Allowed fixed modifications included carbamidomethylation of

cysteine and selenocysteine. TMT labeling was required at lysine, but peptide N-termini were allowed to be either labeled or unla-

beled. Allowed variable modifications for whole proteome datasets were acetylation of protein N-termini, oxidized methionine,
Cell 183, 1436–1456.e1–e18, November 25, 2020 e9

https://github.com/ding-lab/somaticwrapper
https://www.broadinstitute.org/proteomics
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables


ll
OPEN ACCESS Resource
deamidation of asparagine, hydroxylation of proline in PG motifs, pyro-glutamic acid at peptide N-terminal glutamine, and pyro-car-

bamidomethylation at peptide N-terminal cysteine with a precursorMH+ shift range of�18 to 97 Da. For the phosphoproteome data-

set the allowed variable modifications were revised to allow phosphorylation of serine, threonine, and tyrosine, allow deamidation

only in NG motifs, and disallow hydroxylation of proline with a precursor MH+ shift range of �18 to 272 Da. For the acetylproteome

dataset the allowed variable modifications were revised to allow acetylation of lysine, allow deamidation only in NG motifs, and

disallow hydroxylation of proline with a precursor MH+ shift range of �400 to 70 Da.

PSM quality control

Identities interpreted for individual spectra were automatically designated as confidently assigned using the Spectrum Mill autova-

lidation module to use target-decoy-based false discovery rate (FDR) estimates to apply score threshold criteria. For the whole pro-

teome dataset, thresholdingwas done in 3 steps: at the peptide spectrummatch (PSM) level, the protein level for each TMT-plex, and

the protein level for all 17 TMT-plexes. For the phosphoproteome and acetylproteome datasets, thresholding was done in two steps:

at the PSM and variable modification (VM) site levels.

In step 1 for all datasets, PSM-level autovalidation was done first and separately for each TMT-plex experiment consisting of either

25 LC-MS/MS runs (whole proteome), 13 LC-MS/MS runs (phosphoproteome), or 6 LC-MS/MS runs (acetylproteome), using an

auto-thresholds strategy with a minimum sequence length of 7; automatic variable range precursor mass filtering; and score and

delta Rank1 – Rank2 score thresholds optimized to yield a PSM-level FDR estimate for precursor charges 2 through 4 of < 0.6%

for each precursor charge state in each LC-MS/MS run. To achieve reasonable statistics for precursor charges 5-6, thresholds

were optimized to yield a PSM-level FDR estimate of < 0.3% across all runs per TMT-plex experiment (instead of per each run), since

many fewer spectra are generated for the higher charge states.

In step 2 for the whole proteome dataset, protein-polishing autovalidation was applied separately to each TMTplex experiment to

further filter the PSMs using a target protein-level FDR threshold of zero. The primary goal of this step was to eliminate peptides iden-

tified with low scoring PSMs that represent proteins identified by a single peptide, so-called ‘‘one-hit wonders.’’ After assembling

protein groups from the autovalidated PSMs, protein polishing determined the maximum protein level score of a protein group

that consisted entirely of distinct peptides estimated to be false-positive identifications (PSMs with negative delta forward-reverse

scores). PSMswere removed from the set obtained in the initial peptide-level autovalidation step if they contributed to protein groups

that had protein scores below the maximum false-positive protein score. Step 3 was then applied, consisting of protein-polishing

autovalidation across all TMT plexes together using the protein grouping method ‘‘expand subgroups, top uses shared’’ to retain

protein subgroups with either a minimum protein score of 25 or observation in at least 2 TMT plexes. The primary goal of this

step was to eliminate low-scoring proteins that were infrequently detected in the sample cohort. As a consequence of these two pro-

tein-polishing steps, each identified protein reported in the study comprised multiple peptides, unless a single excellent scoring pep-

tide was the sole match and that peptide was observed in at least 2 TMT-plexes. In calculating scores at the protein level and report-

ing the identified proteins, peptide redundancy was addressed in Spectrum Mill as follows: The protein score was the sum of the

scores of distinct peptides. A distinct peptide was the single highest scoring instance of a peptide detected through anMS/MS spec-

trum. MS/MS spectra for a particular peptide may have been recorded multiple times (e.g., as different precursor charge states, in

adjacent bRP fractions, modified by deamidation at asparagine or oxidation of methionine, or with different phosphosite localization),

but were still counted as a single distinct peptide. When a peptide sequence of > 8 residues was contained in multiple protein entries

in the sequence database, the proteins were grouped together and the highest scoring one and its accession number were reported.

In some cases when the protein sequences were grouped in this manner, there were distinct peptides that uniquely represent a lower

scoring member of the group (isoforms, family members, and different species). Each of these instances spawned a subgroup. Mul-

tiple subgroups were reported, counted toward the total number of proteins, and were given related protein subgroup numbers (e.g.,

3.1 and 3.2 for group 3, subgroups 1 and 2). For thewhole proteome datasets the above criteria yielded false discovery rates (FDR) for

each TMT-plex experiment of < 0.5% at the peptide-spectrum match level and < 0.6% at the distinct peptide level. After assembling

proteins with all the PSMs from all the TMT-plex experiments together, the aggregate FDR estimates were 0.41% at the peptide-

spectrum match level, 1.6% at the distinct peptide level, and < 0.01% (1/10,633) at the protein group level. Since the protein-level

FDR estimate neither explicitly required a minimum number of distinct peptides per protein nor adjusted for the number of possible

tryptic peptides per protein, it may underestimate false positive protein identifications for large proteins observed only on the basis of

multiple low scoring PSMs.

In step 2 for the phosphoproteome and acetylproteome datasets, variable modification (VM) site polishing autovalidation was

applied across all 17 TMT plexes to retain all VM-site identifications with either a minimum id score of 8.0 or observation in at least

3 TMT plexes. The intention of the VM-site polishing step is to control FDR by eliminating unreliable VM site-level identifications,

particularly low-scoring VM sites that are only detected as low-scoring peptides that are also infrequently detected across all of

the TMT plexes in the study. In calculating scores at the VM site level and reporting the identified VM sites, redundancy was ad-

dressed in Spectrum Mill as follows: A VM site table was assembled with columns for individual TMT-plex experiments and rows

for individual VM sites. PSMs were combined into a single row for all non-conflicting observations of a particular VM site (e.g.,

different missed cleavage forms, different precursor charges, confident and ambiguous localizations, and different sample-handling

modifications). For related peptides, neither observations with a different number of VM sites nor different confident localizations

were allowed to be combined. Selecting the representative peptide from the combined observations was done such that once confi-

dent VM site localization was established, higher identification scores and longer peptide lengths were preferred. While a Spectrum
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Mill identification score was based on the number of matching peaks, their ion type assignment, and the relative height of unmatched

peaks, the VM site localization score was the difference in identification score between the top two localizations. The score threshold

for confident localization, > 1.1, essentially corresponded to at least 1 b or y ion located between two candidate sites that had a peak

height > 10% of the tallest fragment ion (neutral losses of phosphate from the precursor and related ions as well as immonium and

TMT reporter ions were excluded from the relative height calculation). The ion type scores for b-H3PO4, y-H3PO4, b-H2O, and y-H2O

ion types were all set to 0.5. This prevented inappropriate confident localization assignment when a spectrum lacked primary b or y

ions between two possible sites but contained ions that could be assigned as either phosphate-loss ions for one localization or water-

loss ions for another localization. VM site polishing yielded 63,416 phosphosites with an aggregate FDR of 0.44% at the phosphosite

level. In aggregate, 70% of the reported phosphosites in this study were fully localized to a particular serine, threonine, or tyrosine

residue. VM site polishing yielded 18,392 acetylsites with an aggregate FDR of 0.57% at the acetylsite level. In aggregate, 99%of the

reported acetylsites in this study were fully localized to a particular lysine residue. The overall peptide identifications enabled calcu-

lation of enrichment rates (modified peptides/all peptides) for phosphopeptides (by IMAC) and acetylpeptides (by anti-acetyl-Lysine

antibodies). Phospho-STY enrichment rates for each plex ranged from 88%–97% (plex 2was an outlier at 71%). Acetyl-K enrichment

rates for each plex ranged from 45%–69% (plex 11 was an outlier at 24%).

Quantification using TMT ratios

Using the Spectrum Mill Protein/Peptide Summary module, a protein comparison report was generated for the proteome dataset

using the protein grouping method ‘‘expand subgroups, top uses shared’’ (SGT). For the phosphoproteome and acetylproteome da-

tasets, a Variable Modification site comparison report limited to either phospho or acetyl sites, respectively, was generated using the

protein grouping method ‘‘unexpand subgroups.’’ Relative abundances of proteins and VM sites were determined in Spectrum Mill

using TMT reporter ion intensity ratios from each PSM. TMT reporter ion intensities were corrected for isotopic impurities in the Spec-

trumMill Protein/Peptide summarymodule using the afRICA correctionmethod, which implements determinant calculations accord-

ing to Cramer’s Rule (Shadforth et al., 2005) and correction factors obtained from the reagent manufacturer’s certificate of analysis

(https://www.thermofisher.com/order/catalog/product/90406) for TMT10 lot number QK226692A. A protein-level, phosphosite-

level, or acetylsite-level TMT ratio was calculated as the median of all PSM-level ratios contributing to a protein subgroup, phospho-

site, or acetylsite. PSMs were excluded from the calculation if they lacked a TMT label, had a precursor ion purity < 50% (MS/MS has

significant precursor isolation contamination from co-eluting peptides), or had a negative delta forward-reverse identification score

(half of all false-positive identifications). Lack of TMT label led to exclusion of PSMs per TMT plex with a range of 1.8 to 3.1% for the

proteome, 1.2 to 3.8% for the phosphoproteome, and 1.5 to 5.2% (outliers were plex 11 at 37% and plex 14 at 8.6%) for the ace-

tylproteome datasets. Low precursor ion purity led to exclusion of PSMs per TMT plex with a range of 3.7 to 6.4% for the proteome,

2.1 to 2.9% for the phosphoproteome, and 3.0 to 6.5% for the acetylproteome datasets.

Two-component normalization of TMT ratio

It was assumed that for every sample there would be a set of unregulated proteins or phosphosites that had abundance comparable

to the common reference (CR) sample. In the normalized sample, these proteins, phosphosites, or acetylsites should have a log TMT

ratio centered at zero. In addition, there were proteins, phosphosites, and acetylsites that were either up- or downregulated

compared to the CR. A normalization scheme was employed that attempted to identify the unregulated proteins and phosphosites,

and centered the distribution of these log-ratios around zero in order to nullify the effect of differential protein loading and/or system-

atic MS variation. A 2-component Gaussian mixture model-based normalization algorithm was used to achieve this effect. The two

Gaussians (mi1,1) and N(mi2,si2) for a sample i were fitted and used in the normalization process as follows: the mode mi of the log-

ratio distribution was determined for each sample using kernel density estimation with a Gaussian kernel and Shafer-Jones band-

width. A two-component Gaussian mixture model was then fit with the mean of both Gaussians constrained to be mi, i.e., mi1 =

mi2 = mi. The Gaussian with the smaller estimated standard deviation si =minðbs1i; bs2iÞ was assumed to represent the unregulated

component of proteins/phosphosites/acetylsites, andwas used to normalize the sample. The sample was standardized using (mi,) by

subtracting the mean mi from each protein/phosphosite/acetylsite and dividing by the standard deviation si.

Identification of patient-specific single amino acid variants, indels, and spliceforms

For each of the 122 patients’ tumors analyzed in this study, whole exome DNA sequencing and Illumina RNA-seq data generated

from aliquots of the cryopulverized tumors and accompanying germline DNA samples were obtained under controlled access. Tu-

mor-specific somatic DNA-variant calls and germline DNA-variant calls from the same individual, and splice junctions predicted from

RNA-seq assemblies were generated as described above (Genomic Data Analysis). The proteogenomic database tool QUILTS v3.0

(http://openslice.fenyolab.org/cgi-bin/pyquilts_cgi.pl) (Ruggles et al., 2015) was used to incorporate the germline and somatic non-

synonymous single nucleotide variant calls (SNVs), indels, RNA-seq predicted splice junctions and gene fusions into a protein

sequence database for each patient. The human RefSeq protein database (version 20160914) was used as a reference for the

hg19 proteome and genome. QUILTSwas runwith the following thresholds for number of RNA-seq reads supporting splice junctions:

both exon boundaries annotated (2), left boundary annotated (3), and no boundaries annotated (3).

The QUILTS personalized databases for each patient were merged for searching the MS/MS spectra to accommodate the multi-

plexed samples used in LC-MS/MS data generation. Since each of the 15 plexes of TMT10 labeled tumor samples was prepared by

combining 9 individual tumor samples plus an aliquot of common reference (which was a mixture of 40 tumors), each MS/MS spec-

trum could be derived from a peptide sequence shared by up to 49 individual tumors. One combined sequence database was made

by concatenating the QUILTS-generated 122 individual FASTA files. When concatenating, variant and spliceform summary files for
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the whole exome and RNA-seg derived information, respectively, were generated with the Spectrum Mill Protein Databases utilities

to enable subsequent matching of individual tumors to sequence identifiers and positions of genomic features. Completely novel

junctions, with both boundaries matching no known exons, were omitted. The concatenated file was made non-redundant by

removing repeat entries with identical full-length sequences. Protein sequences with length < 7 amino acids were also removed.

The resulting non-redundant, patient-specific protein sequence database containing somatic and germline single amino acid vari-

ants (179,768 sequences), spliceforms (283,149 sequences), indels (11,586 sequences), and gene fusions (1601 sequences), was

concatenated together with the human reference database, RefSeq version 20160914 (38,281 sequences), to yield the database

(514,385 total sequences) used for searches with MS/MS spectra.

MS/MS spectra from the whole proteome datasets were searched in two stages: 1) all spectra against the RefSeq reference data-

base, as described above, then 2) the remaining unidentified spectra against the patient-specific sequence database as described

here. This was done to control the false-discovery rate since there are several orders of magnitude fewer high confidence PSM’s

expected to the patient-specific sequences not present in the reference database. Search parameters other than the database

were the same as the stage 1 searches.

Separate PG event tables for the two primary PG event types, variants and spliceforms (including indels and frameshifts), were

assembled with columns for individual iTRAQ 4-plex experiments and rows for individual PG events. PSM’s with a minimum identi-

fication score of 8.0 were combined into a single row for all non-conflicting observations of a particular PG event (i.e., multiple pep-

tides containing altered coding sequence due to a frameshift, different trypsin missed cleavage forms of peptides that span a splice

junction or contain an SAAV or new protein C terminus resulting from introduction of a novel stop codon, different precursor charges,

different sample handling modifications of the same peptide, and repeat observations in adjacent bRP fractions). The representative

peptide reported from the combined observations is the one with the highest identification score. A polishing step was manually

applied to each table to further filter the PG events to reach a suitable PG-event level identification FDR. The following thresholds

were applied to the representative peptide of each PG event: delta Rank1 – Rank2 score > 1.0, minimum sequence length > 7 (var-

iants), > 8 (spliceforms). Lower-scoring, infrequently observed spliceforms were further filtered to exclude those with both a score <

9.3 and detection in < 3 TMT10 plexes. Consequently, the final PG event-level cumulative FDR estimates were variants (1.0%), and

spliceforms (1.1%).

Relative abundances of each PG event in a patient sample were determined in SpectrumMill using TMT reporter ion intensity ratios

from each PSM. A PG event-level TMT ratio was calculated as themedian of all PSM level ratios contributing to each event remaining

after excluding those PSM’s lacking a TMT label, having a negative delta forward-reverse score (half of all false-positive identifica-

tions), or having a precursor ion purity < 50% (MS/MS has significant precursor isolation contamination from co-eluting peptides).

The ratios for all PG events for a patient were then standardized by subtracting the centering factor and dividing by the scaling factor

of the protein-level TMT ratios for that patient derived from the results of the stage 1 search (reference database only). Since eachMS/

MS spectrum has 10 TMT reporter ions for 9 patients and the common control (40 patients), the detection of a rare PG event can

typically be attributed to a specific patient when 1 ratio is significantly higher than the other 9.

Systems biology analysis
Sample exclusion

Typical TMT LC-MS/MS experiments exhibit TMT log2 ratios (individual sample / common reference) with themedian ratio value of all

peptides from a sample being approximately constant across the LC retention time range of each LC-MS/MS run in an experiment.

However, for all 18 normal adjacent samples (constituting plexes 14 and 15), the median ratios steadily rose by 1 to 2 log2 units from

the beginning to the end of the LC gradient in all fractions of all data types (proteome, phosphoproteome, and acetylome). This

behavior would be consistent with elution failure from a desalting step prior to fractionation. Consequently, the resulting quantitative

data for 18 normal adjacent samples were considered to not meet quality standards for inclusion in subsequent analyses. Notably, all

QC-fail samples in our prior study (Mertins et al., 2016) exhibited this chromatographic behavior, though it was not appreciated at

the time.

Dataset filtering

Proteins (global proteome), phosphosites and acetylsites present in fewer than 30% of samples (i.e., missing in > 70% of samples)

were removed from the respective datasets. Furthermore:

C Proteins were required to have at least two observed TMT ratios in > 25% of samples in order to be included in the proteome

dataset. Phosphosites and acetylsites were required to have at least one observed TMT ratio in > 25% of samples.

C Proteins, phosphosites and acetylsites were required to have TMT ratios with an overall standard deviation > 0.5 across all the

samples where they were observed. This ensured that a small number of proteins, phosphosites and acetylsites that did not

vary much over the set of samples were excluded to minimize noise.

C Replicate samples in the dataset were merged by taking the mean of the respective expression values or ratios.

Some of the filtering steps were modified for specific analyses in the study. For many of the marker selection and gene set enrich-

ment analyses, at least 50% of samples were required to have non-missing values for proteins/phosphosites/acetylsites, since
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missing values were imputed, and excessive missing values can result in poor imputation. Alternate filtering has been noted in de-

scriptions of the relevant methods and are summarized Table S2A.

CNA-driven cis and trans effects

Correlations between copy number alterations (CNA) and RNA, proteome, phosphoproteome and acetylproteome (with proteome

and PTM data mapped to genes, by choosing the most variable protein isoform/PTM site as the gene-level representative) were

determined using Pearson correlation of common genes present in CNA-RNA-proteome (8,668 genes), CNA-RNA-phosphopro-

teome (4,534 genes) and CNA-RNA-acetylproteome (1,604 genes). In addition, p-values (corrected for multiple testing using Benja-

mini-Hochberg FDR; Benjamini and Hochberg, 1995) for assessing the statistical significance of the correlation values were also

calculated. CNA trans-effects for a given gene were determined by identifying genes with statistically significant (FDR < 0.05) positive

or negative correlations.

CMAP analysis

Candidate genes driving response to copy number alterations were identified using large-scale Connectivity Map (CMAP) queries.

The CMAP (Lamb et al., 2006; Subramanian et al., 2017) is a collection of about 1.3 million gene expression profiles from cell lines

treated with bioactive small molecules (�20,000 drug perturbagens), shRNA gene knockdowns (�4,300) and ectopic expression of

genes. The CMAP dataset is available on GEO (Series GSE92742). For this analysis, we use the Level 5 (signatures from aggregating

replicates) TouchStone dataset with 473,647 total profiles, containing 36,720 gene knock-down profiles, with measurements for

12,328 genes. See https://clue.io/GEO-guide for more information.

To identify candidate driver genes, proteome profiles of copy number-altered samples were correlated with gene knockdown

mRNA profiles in the above CMAP dataset, and enrichment of up/downregulated genes was evaluated. Normalized log2 copy num-

ber values less than�0.3 defined deletion (loss), and values greater than +0.3 defined copy number amplifications (gains). In the copy

number-altered samples (separately for CNA amplification and CNA deletion), the trans-genes (identified by significant correlation in

‘‘CNA driven cis and trans effects’’ above) were grouped into UP and DOWN categories by comparing the protein ratios of these

genes to their ratios in the copy number neutral samples (normalized log2 copy number between �0.3 and +0.3). The lists of UP

and DOWN trans-genes were then used as queries to interrogate CMAP signatures and calculate weighted connectivity scores

(WTCS) using the single-sample GSEA algorithm (Krug et al., 2019). The weighted connectivity scores were then normalized for

each perturbation type and cell line to obtain normalized connectivity scores (NCS). See (Subramanian et al., 2017) for details on

WTCS and NCS. For each query we then identified outlier NCS scores, where a score was considered an outlier if it fell beyond

1.5 times the interquartile range of score distribution for the query. The query gene was a candidate driver if (i) the score outliers

were statistically cis-enriched (Fisher test with BH-FDR multiple testing correction) and (ii) the gene had statistically significant

and positive cis-correlation.

For a gene to be considered for inclusion in aCMAP query it needed to i) have a copy number change (amplification or deletion) in at

least 15 samples; ii) have at least 20 significant trans genes; and iii) be on the list of shRNA knockdowns in the CMAP. Of the genes

satisfying these conditions, the top 501 genes (sorted based on the number of trans-events) were used for the analysis, and resulted

in 910 queries (CNA amplification and deletion combined) that were tested for enrichment. 21 candidate driver genes were identified

with Fisher test FDR < 0.26 using this process.

In order to ensure that the identified candidate driver genes were not a random occurrence, we performed a permutation test to

determine howmany candidate driver geneswould be identifiedwith random input (Mertins et al., 2016). For the 910 queries used, we

substituted the bona-fide trans-genes with randomly chosen genes, and repeated the CMAP enrichment process. To determine

FDR, each permutation run was treated as a Poisson sample with rate l, counting the number of identified candidate driver genes.

Given the small n ( = 10) and l, a Score confidence interval was calculated (Barker, 2002) and the midpoint of the confidence interval

used to estimate the expected number of false positives. Using 10 random permutations, we determined the overall false discovery

rate to be FDR = 0.26, with a 95% CI of (0.19, 0.32).

To identify how many trans-correlated genes for all candidate regulatory genes could be directly explained by gene expression

changes measured in the CMAP shRNA perturbation experiments, knockdown gene expression consensus signature z-scores

(knockdown/control) were used to identify regulated genes with a = 0.05, followed by counting the number of trans-genes in this

list of regulated genes.

To obtain biological insight into the list of candidate driver genes, we performed (i) enrichment analysis on samples with extreme

CNA values (amplification or deletion) to identify statistically enriched sample annotation subgroups; and (ii) GSEA on cis/trans-cor-

relation values to find enriched pathways.

Note that the connectivity score calculation described above, and the underlying CMAP data, was based on a recent publication

(Lamb et al., 2006; Subramanian et al., 2017) and was different from that used in Mertins et al. (2016). Furthermore, the CNA data in

the current publication was derived from WES sequencing data, in contrast to SNP array-based CNA data used in Mertins et al.

(2016). Thus, given a different technology platform for copy number data generation and significant changes in both the underlying

CMAP database and the calculation of connectivity scores, the candidate driver genes identified here do not overlap with those re-

ported in Mertins et al. (2016).

RNA-protein correlation

Correlations between mRNA expression and protein abundance for each gene-protein pair were measured using Pearson correla-

tion. To assess the statistical significance of the correlation, a p value (adjusted for multiple testing using FDR) was also calculated.
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RefSeq protein IDs in the protein data weremapped to HUGO gene symbols. In total, 8,362 genes were quantified in both mRNA and

protein data and subsequently used for RNA-protein correlation calculations.

Kinase activity prediction via PTM-SEA

Kinase activity scores were inferred from phosphorylation sites by employing PTM signature enrichment analysis (PTM-SEA) using

the PTM signatures database (PTMsigDB) v1.9.0 (https://github.com/broadinstitute/ssGSEA2.0). Sequence windows flanking the

phosphorylation site by 7 amino acids in both directionswere used as unique site identifiers. Only fully localized phosphorylation sites

as determined by Spectrum Mill software were taken into consideration. Phosphorylation sites on multiply phosphorylated peptides

were resolved using the approach described in Krug et al. (2019) resulting in a total of 29,406 phosphorylation sites that were sub-

jected to PTM-SEA analysis using the following parameters:

C gene.set.database = ‘‘ptm.sig.db.all.flanking.human.v1.9.0.gmt’’

C sample.norm.type = ‘‘rank’’

C weight = 0.75

C statistic = ‘‘area.under.RES’’

C output.score.type = ’’NES’’

C nperm = 1000

C global.fdr = TRUE

C min.overlap = 5

C correl.type = ‘‘z.score’’

NMF subtype-specific PTM-SEA was based on signed log-transformed p values derived from a two-sample moderated t test

(Ritchie et al., 2015) comparing each cluster to all other clusters. The same parameters as described abovewere usedwith the excep-

tion of ‘‘weight = 1.’’

Pathway projection using ssGSEA

The Gene Set Enrichment Analysis (ssGSEA) implementation available on https://github.com/broadinstitute/ssGSEA2.0 was used to

separately project mRNA abundances to signaling pathways. The gene-centric and row-normalized (gene-centered) RNA data ma-

trix derived as described in ‘‘RNA Quantitation’’ was then subjected to ssGSEA using the following parameters:

C gene.set.database = ‘‘h.all.v6.2.symbols.gmt’’

C sample.norm.type = ‘‘rank’’

C weight = 0.75

C statistic = ’’area.under.RES’’

C output.score.type = ‘‘NES’’

C nperm = 1000

C global.fdr = TRUE

C min.overlap = 10

C correl.type = ’’z.score’’

Analysis of acetylation data

Weused the Reactome (Fabregat et al., 2018) Metabolism gene set containing 2,212 genes to define proteins involved inmetabolism.

Unsupervisedclusteringwasperformedonmetabolic proteinsdifferentially expressedbetweenNMFclusters (Kruskal–Wallis test FDR

p value < 5e-05). Differentially acetylated normalized (see below)metabolic Ac sites were selected using a similar procedure with FDR

p value < 0.005. All p valueswere adjusted to FDR using the Benjamini-Hochberg procedure. Normalization of acetylation abundance

was performed globally using a linear regressionmodelAcsitezb0 + b1 � Pr + εwhereAc= acetylation abundance of a given protein Ac

site;Pr=protein abundanceof a givenprotein;b1 = predictedcoefficient betweenPrandAc;b0 = constant, and ε= residual values. The

residual value ε of every fitted model was used as a new normalized acetylation value not explained by protein abundance.

Subcellular location of metabolic proteins was identified using the COMPARTMENTS database (Binder et al., 2014), filtered by ev-

idence score > 4. An unpaired two-sample Wilcoxon test was used to find proteins and normalized Ac sites differentially expressed

between pairs of NMF clusters as shown in Figures 2B and S2A (FDR p value < 0.05).

Association between histone acetyltransferases and histone deacetylases was tested using a linear regression mod-

el:Acsubstrate sitezb0 + b1 � Prsubstrate + b2 � PrHAT=HDAC + ε. P values of b2 coefficients were adjusted to FDR using Benjamini-Hoch-

berg procedure. The following HATs and HDACs were used to test association with all possible metabolic Ac sites:CREBBP, EP300,

HAT1, KAT2A, KAT2B, TAF1, KAT5, KAT6A, KAT6B, KAT7, KAT8, CLOCK, NCOA1, NCOA3, MCM3AP, ATF2, ELP3, HDAC1,

HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, SIRT1, SIRT2, SIRT3, SIRT5, SIRT6,

SIRT7. Significant (FDR p value < 0.1) associations between mitochondrial HATs and HDACs and mitochondrial substrates Ac sites

were defined by FDR p value < 0.1 and are shown in Figure 2D.

Nuclear proteins were determined by the COMPARTMENTS database with the nucleus score = 5. Samples with the highest acet-

ylation coverage (N = 92, > 80% of nuclear Ac sites detected) were used for clustering. Acetylation sites differentially abundant be-

tween NMF clusters (not normalized to the protein abundance) were selected for analysis (Kruskal–Wallis test FDR p value < 0.05).
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Global comparison of acetylation sites abundance and protein abundance between clusters 1 and 3 (Figure 2E) was performed using

a nonparametric Wilcoxon test. Acetylation or protein changes were considered significantly different if they had FDR p value < 0.05

and median fold change > 0.5. The ‘Acetylation up in cluster 1’ group is defined by significantly different Ac sites in which the acet-

ylation median fold change is positive, while the protein change is not significant; the ‘Protein up in cluster 1’ group is defined by

significantly different proteins in which the protein median fold change is positive, while the acetylation change is not significant.

Pathway and GO terms overrepresentation testing was performed using gProfiler (Reimand et al., 2018).

Kinase phosphorylation outliers

To nominate kinase activity characteristic to each PAM50 and NMF cluster, as in previous studies (Dou et al., 2020; Mertins et al.,

2016), we usedBlackSheep’s differential extreme value analysismodule (Blumenberg et al., 2019). For each phosphosite, themedian

and interquartile range (IQR) were calculated across all tumors. A site was defined as an outlier if it was more than 1.5 times the IQR

above the median. Phosphosites were then collapsed into proteins by counting outlier and non-outlier values per sample. For

each group of interest (e.g., NMF clusters), proteins not enriched in outliers in that group and proteins without at least 30% of

samples with an outlier were removed. Following filtering, outlier and non-outlier sites per gene were counted for each group of in-

terest and a Fisher’s exact test was used to calculate a p value. P values were corrected for multiple hypothesis testing using the

Benjamini-Hochberg procedure. For additional insight into kinase activity, we visualized enrichment of kinase activation loops phos-

phorylation, calculated by a rank sum test, of loops taken from a curated list from Schmidlin et al. (2019); in addition we visualized

enrichment of phosphorylation of kinase substrate sets from the PTM-SEA analysis (Krug et al., 2019).

Multi-omics clustering

Non-negative matrix factorization (NMF) implemented in the NMF R-package (Gaujoux and Seoighe, 2010) was used to perform un-

supervised clustering of tumor samples and to identify proteogenomic features (proteins, phosphosites, acetylsites, RNA transcripts

and somatic copy number alterations) that showed characteristic abundance patterns for each cluster. Briefly, given a factorization

rank k (where k is the number of clusters), NMF decomposes a p x n data matrix V into two matricesW and H such that multiplication

ofW and H approximates V. Matrix H is a k x nmatrix whose entries represent weights for each sample (1 to N) to contribute to each

cluster (1 to k), whereas matrixW is a p x kmatrix representing weights for each feature (1 to p) to contribute to each cluster (1 to k).

Matrix H was used to assign samples to clusters by choosing the k with maximum score in each column of H. For each sample, we

calculated a cluster membership score as the maximal fractional score of the corresponding column in matrixH.We defined a ’’clus-

ter core’’ as the set of samples with cluster membership score > 0.5. Matrix W containing the weights of each feature in a certain

cluster was used to derive a list of representative features separating the clusters using the method proposed in Kim and Park

(2007). Cluster-specific features were further subjected to a 2-sample moderated t test (Ritchie et al., 2015) comparing the feature

abundance between the respective cluster and all other clusters. Derived p valueswere adjusted formultiple hypothesis testing using

the methods proposed in Benjamini and Hochberg (1995).

To enable integrative multi-omics clustering, we required all data types (and converted if necessary) to represent ratios to either a

common reference measured in each TMT plex (proteome, phosphoproteome, acetylproteome) or an in-silico common reference

calculated as the median abundance across all samples (mRNA, see ‘‘RNA quantification’’). All data tables were then concatenated

and only features quantified in all tumors were used for subsequent analysis. Features with the lowest standard deviation (bottom 5th

percentile) across all samples were deemed uninformative and were removed from the dataset. Each row in the data matrix was

further scaled and standardized such that all features from different data types were represented as z-scores.

Since NMF requires a non-negative input matrix, the data matrix of z-scores was further converted into a non-negative matrix as

follows:

1) Create one data matrix with all negative numbers zeroed.

2) Create another data matrix with all positive numbers zeroed and the signs of all negative numbers removed.

3) Concatenate both matrices resulting in a data matrix twice as large as the original, but with positive values only and zeros and

hence appropriate for NMF.

The resulting matrix was then subjected to NMF analysis leveraging the NMF R-package (Gaujoux and Seoighe, 2010) and using

the factorization method described in Brunet et al. (2004). To determine the optimal factorization rank k (number of clusters) for the

multi-omic data matrix, a range of clusters between k = 2 and 8 was tested. For each kwe factorized matrix V using 50 iterations with

random initializations of W and H. To determine the optimal factorization rank we calculated two metrics for each k: 1) cophenetic

correlation coefficient measuring how well the intrinsic structure of the data was recapitulated after clustering and 2) the dispersion

coefficient of the consensus matrix as defined in Kim and Park (2007) measuring the reproducibility of the clustering across 50 iter-

ations. The optimal k was defined as the maximum of the product of both metrics for cluster numbers between k = 3 and 8 (Figures

S3C and S4B).

Having determined the optimal factorization rank k, and in order to achieve robust factorization of themulti-omics datamatrix V, the

NMF analysis was repeated using 1000 iterations with random initializations of W and H and partitioning of samples into clusters as

described above. Due to the non-negative transformation applied to the z-scored datamatrix as described above,matrixW of feature

weights contained two separate weights for positive and negative z-scores of each feature, respectively. In order to reverse the non-

negative transformation and to derive a single signedweight for each feature, each row inmatrixWwas first normalized by dividing by
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the sum of feature weights in each row. Weights per feature and cluster were then aggregated by keeping the maximal normalized

weight andmultiplyingwith the sign of the z-score from the initial datamatrix. Thus, the resulting transformed version ofmatrixWsigned

contained signed cluster weights for each feature present in the input matrix.

In order to functionally characterize the clustering results, normalized enrichment scores (NES) of cancer-relevant gene sets were

calculated by projecting the matrix of signed multi-omic feature weights (Wsigned) onto Hallmark pathway gene sets (Liberzon et al.,

2015) using ssGSEA (Barbie et al., 2009). To derive a single weight for each genemeasured acrossmultiple omics data types (protein,

RNA, phosphorylation site, acetylation site) we retained the weight with maximal absolute amplitude. We used the ssGSEA imple-

mentation available on https://github.com/broadinstitute/ssGSEA2.0 using the following parameters:

C gene.set.database = ‘‘h.all.v6.2.symbols.gmt’’

C sample.norm.type = ‘‘rank’’

C weight = 1

C statistic = ’’area.under.RES’’

C output.score.type = ‘‘NES’’

C nperm = 1000

C global.fdr = TRUE

C min.overlap = 5

C correl.type = ’’z.score’’

To test the association between the resulting clusters and clinical variables, either a Fisher’s exact test (R function fisher.test) for

discrete variables or a Wilcoxon rank-sum test (ggpubr R-package) in case of continuous variables was used to assess overrepre-

sentation in the set of samples defining the cluster core as described above.

Survival analysis

To explore differences in prognosis for PAM50 LumA samples in the NMF LumA-I cluster compared to those in the NMF LumB-I clus-

ter, we leveraged outcome data from the METABRIC study [METABRIC data was downloaded from cBioPortal (https://www.

cbioportal.org/study/summary?id=brca_metabric) on Jun 2, 2020]. We trained random forest classifiers to discriminate these two

groups—(A) PAM50 Luminal A in NMF LumA-I versus (B) PAM50 Luminal A in mixed Luminal A/B NMF LumB-I—using RNA-seq

expression data from this study. The classifier was trained on genes common to our dataset andMETABRIC, using the caret package

in R. Cross validation (10-fold) over the training data was used to optimize model parameters. The final model was trained on the

entire training dataset using the optimal parameters, and then used to predict NMF cluster assignment for all PAM50 LumA samples

inMETABRIC. Kaplan-Meier plots and log-rank tests for statistical significancewere executed using the survival and survminer pack-

ages in R. For comparison, survival information for PAM50 LumB samples inMETABRICwere included. Similar results were obtained

when the classifier was trained using gene-level global proteome data (Figure S3K).

Single-omics clustering and application to the Johansson et al. breast proteogenomic dataset

The NMF pipeline described above was applied to each data type individually using the same parameters as for multi-omics analysis

except for 500 random restarts of the factorization. An identical NMF clustering approach was applied to the Johansson et al. (2019)

dataset (their Supplementary Data 1). To allow integrative analysis of our protein data with the protein data in Johansson et al. (2019)

(Figure S4D), we first aggregated the protein-level data from our study to generate a gene-level data matrix by retaining the dominant

isoform (identified by the lowest protein subgroup number) associated with each gene symbol. Both gene-level protein data matrices

were then separately subjected to gene-level z-score transformation before joining the matrices using the unique gene symbols as a

key. The NMF pipeline was applied to the integrated protein data matrix using 500 random restarts to cluster all 167 tumors into six

clusters, a number pre-specified to correspond to the number of clusters identified in the Johansson et al. (2019) analysis.

LinkedOmics data preparation

Sample metadata, gene-centric GISTIC copy number log ratios, median-MAD normalized RNA expression levels, and 2-component

normalized TMT log ratios for proteome, phosphoproteome, and acetylproteome datasets were deposited in LinkedOmics. Since

LinkedOmics is a gene-centric database, proteome data was aggregated to the gene level according to the following process: for

each subgroup, the HGNC symbol for the dominant protein in the subgroup, which was aggregated from common PSMs for the sub-

group as well as unique PSMs for that protein by SpectrumMill, was retained. If other proteins in the subgroup were reported (aggre-

gated from unique PSMs by SpectrumMill), themedian of all entries from the subgroup for each unique HGNC symbol (other than the

dominant protein gene) was retained. The median of each entry for each retained gene was uploaded into LinkedOmics. Data pro-

cessed in this manner was also used for the ERBB2 proteogenomic analysis reported in Figures 3A and 3B, the immune analysis in

Figures 4 and 5, and the cell cycle analysis in Figure 6. Gene level data for the phospho- and acetylproteomes was aggregated by the

median of all sites assigned to each HGNC symbol, and site level data was aggregated by taking the median of all PSMs with high

confidence localization (best score VML > = 1.1) for each phospho/acetyl site position in each protein.

Proteogenomic status of ERBB2 and TOP2A

Samples were classified as proteogenomic (PG) positive for a given gene amplification when that amplification led to high levels of

protein relative to the population of samples without the gene amplification. Gene-amplified samples were defined by a GISTIC

threshold score of 2. All other samples were considered non-amplified. Protein Z-scores were calculated for each amplified sample
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relative to the distribution of log2 TMT ratios for the non-amplified samples using an outlier approach described previously (Satpathy

et al., 2020), in which the Z-score was the number of non-amplified set standard deviations above the mean of the non-amplified

samples that the protein expression represented in a given amplified sample. Z-scores above 2 were considered to show elevated

protein expression. For ERBB2 PG+ samples, we also required PG amplification of either the STARD3 orGRB7 gene flanking ERBB2

in the amplicon. The same procedure was applied to log2 iTraq protein data and GISTIC data downloaded from LinkedOmics (http://

linkedomics.org) for the retrospective cohort (Mertins et al., 2016).

Immune profiling and downstream analysis

To calculate RNA-based tumor immune scores and estimate immune-cell-specific contributions to each tumor, FPKM data was

analyzed using ESTIMATE (R package) (Yoshihara et al., 2013), CIBERSORT in absolute mode (Newman et al., 2015), xCell (Aran

et al., 2017) and MCPcounter (R package) (Becht et al., 2016b). We also inferred the immune cell infiltration by ssGSEA using a

recently published immune gene signature (Angelova et al., 2015). Protein-based immune scores for stimulatory and inhibitory im-

mune modulators and the set of HLA proteins were calculated as the mean of the protein log ratios in each set defined in Thorsson

et al. (2019). Immune protein eigenvectors and signatures were calculated using protein data with the protocol and gene sets

described in Thorsson et al. (2019). Then the two top protein signatures closest by Euclidean distance to each of the five eigenvectors

were shown in Figure S7A.

PD-L1 correlation analysis

LinkedOmics (http://linkedomics.org; Vasaikar et al., 2018) was used to identify proteins correlated with PD-L1 mRNA levels within

the PAM50 luminal samples (luminal A + luminal B) and the PAM50 basal samples separately. Benjamini-Hochberg corrected p

values for Spearman rank correlations between PD-L1 and each protein are shown in Figure 5A. WebGestalt (Liao et al., 2019;

http://webgestalt.org) was used to perform GSEA for GO biological process sets (Ashburner et al., 2000) using the signed log P

values (uncorrected) from the Spearman rank correlations of protein TMT log ratios with PD-L1 for each set of samples. For pairwise

Spearman-rank correlation analysis within the luminal and basal PAM50 subsets, pathway scores were calculated as the mean of all

TMT log ratios for proteins in each set for a given sample (Table S6). Gene sets for this analysis included the aforementioned immune

modulator sets (Thorsson et al., 2019), GO biological process sets for nucleotide excision repair (GO:0006289), mRNA processing

(GO:0006397), and RNA splicing (GO:0006397) and unique proteins from DNA repair pathway sets (also used for analysis in Figure 2)

for base excision repair, direct repair, DNA damage checkpoint signaling, Fanconi anemia pathway, homologous recombination,

mismatch repair, non-homologous end joining, nucleotide excision repair, and translesion synthesis defined by Anurag et al.

(2018b). Pairwise Spearman-rank correlation analysis was repeated for the retrospective cohort (Mertins et al., 2016) using scores

generated by averaging protein data for the same protein sets and from running CIBERSORT (Newman et al., 2015) on RPKM

RNA-seq data downloaded from LinkedOmics.

DNA damage response score

To estimate the activity of the DNA double-stranded break response (DDR) pathway, we focused on phosphopeptide abundance of

SQ/TQ sites that have been previously shown to increase in abundance following irradiation-induced double stranded breaks (Mat-

suoka et al., 2007). We found phosphopeptides fromMatsuoka et al. (2007) that were also detected in our study bymatching peptide

sequences (N = 297). Since DDR often increases target peptide phosphorylation from undetectable to highly abundant, we converted

values into up and down outliers using BlackSheep (described above). DDR score was the mean of outlier values for the DDR pep-

tides per sample.

Chromosome instability score

The Chromosome instability (CIN) score was used to summarize the genome-wide SCNA intensity. From the SCNA segmentation

results, we used a straightforward weighted-sum approach to derive the CIN score for each sample as described in Vasaikar

et al. (2019). Specifically, the absolute log2 ratios of all segments (indicating the copy number alteration of these segments) within

a chromosome were summed, while being weighted by the segment length to derive the instability score for the chromosome.

The genome-wide chromosome instability index was further derived by summing the instability score of all 22 autosomes.

Determination of stemness score

Stemness scores were calculated as previously described (Malta et al., 2018). First we used MoonlightR (Colaprico et al., 2020) to

query, download, and preprocess the pluripotent stem cell samples (ESC and iPSC) from the Progenitor Cell Biology Consortium

(PCBC) dataset (Daily et al., 2017; Salomonis et al., 2016). Second, to calculate the stemness scores based on mRNA expression,

we built a predictive model using one-class logistic regression (OCLR) (Sokolov et al., 2016) on PCBC dataset.

For mRNA expression-based signatures, to ensure compatibility with the CPTAC BRCA cohort, we first mapped the gene names

from Ensembl IDs to Human Genome Organization (HUGO), dropping any genes that had no such mapping. The resulting training

matrix contained 12,954 mRNA expression values measured across all available PCBC samples. We used gene-centered FPKM

mRNA expression values for all CPTAC BRCA tumors to generate the mRNASi (mRNA stemness index) for each sample. We

used the function TCGAanalyze_Stemness from the package TCGAbiolinks (Colaprico et al., 2016) following our previously-

described workflow (Mounir et al., 2019), with ‘‘stemSig’’ argument set to PCBC_stemSig.

CDK4/6-related cell cycle analysis

Multi-Gene Proliferation Scores (MGPS) were calculated from the median-MAD normalized RNA-seq data as described previously

(Ellis et al., 2017). Briefly, MGPS was calculated as the mean expression level of all cell cycle-regulated genes identified by Whitfield

et al. (2002) in each sample. Apoptosis and E2F target gene scores were the ssGSEA normalized enrichment scores from the
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corresponding MSigDB Hallmark gene sets calculated above (Pathway projection using ssGSEA). Likewise, CDK1-7 and CDK9

target site/activity scores were the PTM-SEA scores calculated above for ssGSEA enrichment of PhosphositePlus (Hornbeck

et al., 2015) target sites for each of these kinases (Kinase activity prediction via PTM-SEA). TNBCtype (Chen et al., 2012) was applied

to assign triple-negative breast cancer samples to the four TNBC subtypes (BL1, BL2, M and LAR) based on RNaseq FPKM data

(Lehmann et al., 2011, 2016).

RB1 analysis in Cell lines

RB1mutation status, copy number, and protein abundance for Cancer Cell Line Encyclopedia (CCLE) breast cancer cell lines along

with ER and HER2 annotations were downloaded from DepMap (DepMap, Broad (2020): DepMap 20Q2 Public. figshare. Dataset.

https://figshare.com/articles/DepMap_20Q2_Public/12280541/4; Ghandi et al., 2019; Nusinow et al., 2020). Area Under the Curve

(AUC) drug responses to a CDK4/6 inhibitor, palbociclib, were retrieved from the Sanger/Massachusetts General Hospital Genomics

of Drug Sensitivity Dataset 1 (Iorio et al., 2016; Yang et al., 2013). High AUC values indicate low sensitivity to the drug while low AUC

values indicate high sensitivity. Cell lines with RB1 gene level copy number < –1 or having a deletion-causing frameshift mutation

were categorized as RB1 deleted/frameshift. Cell lines with an in-frame deletion or missense mutations in RB1 were categorized

as RB1missense. All other cell lines were RB1WT. For Figure 6D, a Kruskal-Wallis test was performed to test for differences in pal-

bociclib response among cell lines stratified byRB1 status and ER/HER2 subtypes. For Figure 6E, Spearman’s correlation coefficient

was calculated using cell lines with RB1 protein measurements from Figure 6D to test the association between RB1 protein abun-

dance and palbociclib response.

ADDITIONAL RESOURCES

CPTAC program website, detailing program initiatives, investigators, and datasets, is available at https://proteomics.cancer.gov/

programs/cptac.
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Figure S1. Experimental Workflow and Data Quality Metrics, Related to Figure 1

A) Schematic representation of sample processing steps. Fresh frozen tumors were cryopulverized, aliquoted and subjected to genomics and proteomics

analyses. Cryopulverization promoted sample uniformity across multi-omics analyses.

B) Schematic representation of the workflow used for proteome, phosphoproteome and acetylproteome analyses. Tandem mass tags (TMT) were used to

multiplex 9 tumors and the common reference in a single TMT10-plex. The common reference was constructed from 40 tumors based on hormone receptor

status, including 9 triple negative, 12 HER2 positive, and 19 estrogen receptor positive specimens, and was used to connect the TMT-plexes (STAR Methods),

enabling consistent identification and reproducible quantification of proteins, phosphorylation and acetylation sites.

C) Bar chart depicting the number of quantified proteins per channel per TMT plex. Alternating blocks represent all channels within the indicated plex. Red points

and connecting lines show the median log2 ratio per channel (right axis). The blue boxes highlight plexes 14 and 15, which comprised normal adjacent tissue

(NAT) and were excluded from further analysis chiefly for biological but also for QC reasons (STAR Methods).

D) Same layout as C) showing phosphosites.

E) Same layout as C) showing acetylation sites. Consistent with the low acetyl-enrichment yield derived from plex 11 (STAR Methods, ‘‘PSM quality control and

Quantification using TMT ratios’’), the number of quantified acetylation sites was significantly lower in this plex.

F) Profile plots of two-component normalized protein / common reference (CR) ratios.

G) Profile plots of phosphosite / CR ratios.

H) Profile plots of acetylsite / CR ratios.

I) Pairwise inter-plex correlations between phosphopeptide-level log reporter ion intensities of the common reference channel (131), measured in all 17 TMT-10

plexes. Lower triangle: pairwise scatterplots; diagonal: histograms depicting distribution of log intensities; upper triangle: Pearson correlation calculated on

pairwise complete observations of log-transformed intensities. Red histograms depict TMT plexes 14 and 15, which contained normal adjacent tissue (NAT) and

were excluded from the datasets used in the manuscript. Blue histograms correspond to 15 tumor plexes. Average inter-plex Pearson correlation on the

phosphopeptide level across all tumor plexes was 0.69.

J) Boxplots summarizing pairwise inter-plex Pearson correlations between log reporter ion intensities of the common reference channel (131) across 15 tumor

TMT-plexes on protein, phosphopeptide and acetylpeptide levels. Boxes depict the interquartile range (IQR) of the scores with horizontal lines depicting the

median. Whiskers extend to 1.5xIQR from Q1 (25th percentile) and Q3 (75th percentile), respectively. Points depict individual data points.Isobaric-label LC-MS/

MS experiments are purpose-built for a ratio-based quantification strategy. After samples are mixed to form a plex, the peptides from all samples within that plex

should experience the same effects due to subsequent experimental sources of variation (offline basic-pH reversed-phase fractionation, phosphopeptide or

acetylpeptide enrichment, on-line reversed-phase fractionation, selection of precursor ions for MS/MS, and mass spectrometer signal strength). While these

collective effects may lead to substantial inter-plex variation in peptide-level reporter ion intensities, variation of the peptide-level ratios of sample to common

reference can be expected to be consistent (though subject to peptide-level missing values between plexes due to individual peptides not always being selected

for MS/MS).

K) Pairwise Spearman correlations between two-component normalized sample/CR ratios of replicates scattered across ten different TMT-plexes.

L) Dendrogram illustrating the clustering of two-component normalized sample/CR phosphopeptide-level ratios based on all quantified phosphosites without

additional filtering (e.g., for missing values, most variable sites, etc.; n = 63,360). The annotation tracks below the leaves of the dendrogram depict the PAM50

subtype, the TMT10-plex and color-coordinated replicate measurements (gray if no replicate measurements). Samples did not cluster by TMT10 plex, but chiefly

by PAM50 subtype. Replicates measured in different TMT-plexes acquired on the mass spectrometer months apart cluster together. Dendrogram was derived

from complete-linkage hierarchical clustering using 1-Pearson correlation as the distance metric.
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Figure S2. PG Landscape, Related to Table 1

A) CoMut (co-occurrence of mutations) plot summarizing the mutational landscape of this cohort. Each column represents a tumor sample. The top histogram

shows themutational burden of each tumor. Thematrix showsmutation types of significantly (q < 0.1) mutated genes (SMG) identified byMutSig2CV. Plots below

the matrix visualize the allelic fraction and substitution frequencies of somatic mutations. The bar chart to the left indicates the percentage of samples with each

SMG, mutation number and type (synonymous or non-synonymous); the one to the right shows the significance of that SMG in the cohort.

B) Mutational signatures detected in this cohort. Trinucleotide sequence motif: seven distinct mutational signatures were identified (Table 1).

C) Copy number amplifications and deletions analysis. The left panel depicts genomic positions of amplified regions, with x-axes representing the normalized

amplification signals (top) and significance by Q value (bottom). The right panel shows genomic positions of deleted regions, with X-axes representing the

normalized deletion signals (top) and significance by Q value (bottom). The green lines represent the significance cutoff at Q value = 0.25.

D) Heatmap depicting all detected somatic copy number aberrations detected in this cohort. Genes are ordered by chromosomal location (y axis) and samples

are organized by PAM50 subtype and separately clustered for each subtype (x axis).

E) Correlations of SNCA (x axis) to mRNA (left) and protein (right) abundances (y axis).

F) Results of the CMAP analysis. Potential driver genes (permutation FDR < 0.26) of observed CNA correlations identified using LINCS/CMAP connectivity

analysis of proteome profiles from CNA amplified (AMP) or deleted (DEL) samples. The bar plots show, for each potential driver gene, the total number of

statistically significant trans correlations (FDR < 0.05), along with the number of trans-correlated genes (‘‘cmap overlap’’) that are also outliers (absolute value of z-

score > 1.96) in the LINCS/CMAP knockdown profiles. Sample annotations enriched in the sample subsets representing each potential driver gene are sum-

marized in Table S3.

G) Histograms of gene-wise mRNA to protein Pearson correlations of all (gray) and significant correlations (FDR < 0.01) (red).

H) Multi-omic landscape of key BRCA genes, TP53, PIK3CA, ERBB2, ESR1, PGR and GATA3. The heatmap has been generated with the CPTAC-BRCA2020

data viewer (see Data and Code Availability) and resembles Figure 1c in the retrospective BRCA study (Mertins et al., 2016).
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Figure S3. Molecular Subtyping, Related to Figure 1

A) Results of unsupervised non-negative matrix factorization (NMF) subtyping applied to individual data types (STAR Methods). The Sankey diagram depicts the

flow of cluster assignments of all 122 tumors across data types.

B) Unsupervised multi-omics subtyping via NMF identified four molecular subtypes with distinct multi-omics expression patterns. The ability of NMF to assign

weights to features that drive disease clustering (STAR Methods) allowed the identification of proteogenomic features (proteins, phosphorylation sites, acety-

lation sites, mRNA transcripts and SCNAs) that showed increased or decreased abundance levels specifically in each NMF cluster. The heatmap depicts the

standardized abundances (z-scores) of 851 distinct features discriminating the molecular subtypes. acK = acetylated lysine sites; SCNA = somatic copy number

alterations; RNA = gene-level transcripts, Prot = proteins; pSTY = phosphosites. Fisher’s exact test was used to test for enrichment of clinical variables in core

sets of tumors in each cluster. The NMF LumA-I cluster was enriched (Fisher’s exact test) for hormone receptor positivity (estrogen receptor (ER), p = 2.66x10�5

and progesterone receptor (PR), p = 3.55x10�6) and wild-type TP53 (p = 8.51x10�5). The NMF Basal-I cluster was enriched for TP53mutations (p = 4.24x10�10)

and negative clinical hormone receptor status (ER, p = 1.76x10�10 and PR, p = 1.02x10�9). The NMF HER2-I was enriched for HER2-enriched PAM50 subtype

samples (p = 1.38x10�8) and samples with centrally-confirmed, clinically positive ERBB2 status (p = 3.97x10�5). While NMF LumB-I and NMF LumA were only

enriched for their respective PAM50 luminal subtype (p = 1.51x10�7 and p = 3.95x10�11, respectively) both luminal clusters were enriched for positive receptor

status (ER [p = 1.85x10�6, p = 1.85x10�5] and PR [p = 1.26x10�3, p = 3.55x10�6]) as well as wild-type TP53 (p = 9.88x10�6, p = 8.51x10�5).

C) Graph showing cluster metrics (y axis) as a function of the number of clusters K (x axis). Cophenetic correlation (coph), dispersion of the consensusmatrix (disp)

and the product of both metrics are shown (product).

D) Boxplots depicting the distribution of stromal scores inferred by xCell between molecular subtypes. Boxes depict the interquartile range (IQR) of the scores

with horizontal lines depicting the median. Whiskers extend to 1.5xIQR from Q1 (25th percentile) and Q3 (75th percentile), respectively. Points depict individual

data points. P values were derived by pairwise Wilcoxon rank-sum tests.

E) Same layout as D), showing distribution of immune scores inferred by xCell.

F) Same layout as D), showing distribution of stemness scores.

G) Same layout as D), showing distribution of chromosomal instability index (CIN) scores.

H) Enrichment of Cancer Hallmark (Liberzon et al., 2015) gene sets in multi-omics subtypes detected by single sample gene set enrichment analysis (ssGSEA;

Barbie et al., 2009) applied to feature weights determined by NMF to identify the dominant pathway signatures in each cluster. Normalized enrichment scores

(NES) are shown. Asterisks indicate gene sets detected at FDR < 0.01.

I) Scatterplot comparing pathway (MSigDB Hallmark) enrichment scores between the LumA-I (x axis) and LumB-I (y axis) NMF subypes. Pathway scores were

significantly anti-correlated (Pearson r = �0.58, p = 1.1x10�5).

J) NMF clustering applied to the RNAdata in isolation. Heatmap depicting the relative contributions of each sample (x axis) to each cluster (y axis). This heatmap is

a visualization of the (column-normalized) meta-feature matrix derived from decomposing the input matrix (STAR Methods), normalized per column by the

maximum entry.

K) Kaplan-Meier plot showing survival outcome of PAM50 luminal A samples in the METABRIC database that were assigned by a Random Forest protein-based

classifier to theNMF Lum-AI (red) or LumA/B subtypes (green) compared to PAM50 luminal B samples (blue) (similar to the Kaplan-Meier analysis in Figure 1C, but

using a protein- rather than RNA-based Random Forest classifier). The significance of comparisons is noted. P values were derived from log-rank tests.

L) Heatmap depicting standardized abundances of features defining the NMF HER2-I cluster. Features (proteins and phosphosites) are designated to the right of

the heatmap in descending rank according to the number of HER2-I samples that have standardized abundances for that feature above the average for the entire

tumor cohort (z-score > 0). The horizontal line demarcates features up to the first occurence of an element from the ERBB2 amplicon itself (GRB7), which are

therefore labeled ‘‘ERBB2-independent.’’

M) Overrepresentation analysis (hypergeometric test) of upregulated genes in the NMFHER2-I cluster that are independent of the ERBB2 amplicon (box in D). The

Manhattan-like plot depicts log-transformed FDR-corrected p values (y axis) for enriched gene ontologies (GO) terms (Reimand et al., 2018). The dashed line

indicates an FDR of 1x10�4, which was used to define statistical significance for this analysis.

N) Heatmap depicting multi-omics expression patterns of CD274, MKI67, PDCD1, CAV1 and COL1A1 (http://prot-shiny-vm.broadinstitute.org:3838/

CPTAC-BRCA2020).
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Figure S4. Comparison with Previous BRCA Proteomics and PG Studies, Related to Figures 1 and S3

A) Summary of this and prior studies utilizing proteomics or proteogenomics to profile and cluster breast tumors. Shown are sample size analyzed, mass

spectrometry platform and proteomic workflow, proteomic depth achieved, subtype composition and unsupervised clustering results.

B) NMF clustering applied to the proteome dataset from Johansson et al. (2019). Their study of 45 breast tumors with balanced representation of all five PAM50

subtypes described six stable proteomic clusters derived from the subset of 29 tumors that had Pearson correlation R 0.5 relative to at least one other tumor

(Johansson et al., 2019). In addition to an alignment to the PAM50 subtypes, the authors reported a further subdivision of poor-prognosis basal-like and luminal B

tumors driven by immune component infiltration. Application of the NMF pipeline to their complete proteomic data likewise identified six proteome clusters.

Graph shows cluster metrics (y axis) as a function of the number of clusters (K, x axis). Cophenetic correlation (coph), dispersion of the consensus matrix (disp)

and the product of both metrics are shown (product).

C) Heatmap depicting the relative contributions of each sample (x axis) to each cluster (y axis) resulting from application of the NMF pipeline to Johansson et al.

(2019). This heatmap is a visualization of the (column-normalized) meta-feature matrix derived from decomposing the input matrix (STAR Methods), normalized

per column by the maximum-valued entry. High concordance was observed between consensus core tumor clusters (CoTC) reported in Johansson et al. (2019)

and NMF-based subtyping.

D) NMF clustering applied to an integrated proteomic dataset derived from Johansson et al. and the present study (STAR Methods). The comparable MS

workflows utilized in the studies together with the similar cluster structures revealed by the different analytical approaches enabled such integration. Only four

PAM50 LumA samples from Johansson et al. (2019) were assigned to the NMF LumA-I cluster; of the remaining five assigned to the NMF LumB-I cluster, four had

been excluded from their clustering exercise because of low correlation to other samples. These data support our contention that NMF clustering identifies a

smaller, more homogeneous LumA-I group by reassigning some PAM50 LumA samples into the LumB-I group.

E) Normalized enrichment scores (NES) of immune-related Hallmark signatures based on the feature weights driving the clustering shown in D) (STARMethods).

The two samples that formed the Johansson et al. CoTC2 (‘‘basal immune’’) cluster joined a cluster in the combined dataset that was much more heterogeneous

in PAM50 composition but had immune-related Hallmark gene signatures as a unifying characteristic. We therefore suggest that an active immune microen-

vironment rather than the basal subtype assignment was critical to the definition of the CoTC2 cluster.

F) Tyanova et al. (2016) identified a 19-protein predictive classifier for hormone receptor status-based subtypes (ERPR = ER+/PR+; HER2 = HER2+; TN = ER-/

PR-/HER2-) by applying support vector machine (SVM)-based classification to super-SILAC proteomic profiles of 40 total ER/PR+, HER2 and triple negative

breast tumors. The left box shows all 19 proteins grouped by subtype and annotated by their predictive abundance relative to the other subtypes: increased (+) or

decreased (-) expression. The boxplots depict the abundance of 18 of these proteins quantified in our study across ERPR, HER2 and TN subtypes according to

our clinical (ER, PR) and proteogenomic-based (HER2) assessment of receptor status (C9orf114 was not quantified in our analysis, which excluded 5 samples for

which receptor status annotation was incomplete). A negative HER2 status was required for tumors classified as ERPR. Seventeen out of 18 measured markers

maintained their subtype associations in our dataset (Kruskal-Wallis test). Only CAPN7 did not replicate, showing a trend as a negative marker of TNBC that did

not reach statistical significance. Boxes depict the interquartile range (IQR) of the data with horizontal lines depicting the median. Whiskers extend to 1.5xIQR

from Q1 (25th percentile) and Q3 (75th percentile), respectively. Points depict individual data points.

G) Heatmap depicting standardized protein abundances of MAPK3 and EEF1G across all tumors classified as ERPR in our dataset. These positive and negative

ER/PR markers captured PAM50 LumA but interestingly not LumB samples (a distinction not made in the Tyanova et al., 2016 analysis).

H) Bouchal et al. (2019) reported three ‘‘proteotypic’’ proteins associated with ER (INPP4B) and HER2 (ERBB2) receptor status and with tumor grade (CDK1) in a

study using a label-free, data-independent MS acquisition method to examine 96 breast cancer specimens. The boxplots illustrate the protein abundance of

INPP4B between ER+/� and ERBB2 between HER2+/� in our dataset, reproducing their results (Boxplots are defined in panel F). P values were derived from a

Wilcoxon rank-sum test. Due to incomplete grade annotation in our dataset we did not test their association of CDK1 protein expression and grade; however,

CDK1 was significantly correlated with MKi67, (Pearson R = 0.72), consistent with the correlation of R = 0.79 that they reported as a confirmatory analysis in the

TCGA breast cancer dataset (scatterplot).
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Figure S5. PG Metabolic Profiling, Related to Figure 2

A) Pathway schematic similar to Figure 2B but showing differentially expressed metabolic proteins and normalized acetylation sites (Wilcoxon test FDR

p value < 0.05) mapped onto key metabolic pathways across all four NMF subtypes.

B) Scatterplots showing examples of proteins regulated at the protein or at the acetylation level across subtypes. Background color corresponds to pathway

colors in Figure 2C.

C) Scatterplots showing correlation between copy number variation and protein expression of genes involved in metabolism. Spearman’s Rho value is shown.

Background color corresponds to pathway colors in Figure 2C.

D) Boxplot showing SIRT3 protein expression in four NMF subtypes.Wilcoxon test FDR p values are shown: ****% 0.0001, ***% 0.001, **% 0.01. Boxplots show

1.5x the interquartile range for each group, centered on the median.

E) Further examples of nuclear proteins that were differentially acetylated between subtypes 1 and 3 (see Figure 2E), but were not differential at the protein level.

Boxplots show 1.5x the interquartile range for each group, centered on the median.

F) gProfiler pathway and GO overrepresentation analysis of proteins from the ‘Acetylation up in cluster 1’ group in Figure 2G. Proteins were enriched for

nucleoplasm, chromatin organization, HATs acetylate histones, and Metabolism of RNA pathways.
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Figure S6. PG Classification of HER2, Related to Figure 3

A) Proteogenomic analysis of the ERBB2 amplicon for all samples from each dataset shown in Figure 3A.

B) Assessment and frequencies of clinical ERBB2 positive/equivocal samples, ERBB2 gene-amplified, and ERBB2 proteogenomically (PG) positive samples in

each dataset shown in Figure 3A. Clinical assessment was refined after centralized IHC (see STAR Methods), and discrepant cases represent those for which

clinical status was ERBB2 positive or equivocal, but PG status was negative. ‘‘Pseudo-ERBB2 +’’ cases are those for which amplicon genes were amplified

without a corresponding increase in protein expression.

C) Heatmap illustrating the RNA abundance levels of 49 PAM50 genes detected in this dataset. Rows and columns are hierarchically clustered.
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Figure S7. Immune Landscape of BRCA and Phospho-Rb-Dependent Kinase Activity in TNBC, Related to Figures 4, 5, and 6

A) Heatmap of scores for immune and stromal cell types inferred from RNA-seq data by MCP-Counter (labeled MCPcounter; Becht et al., 2016a, 2016b) and by

the immunophenotyping approach described by Angelova et al. (2015) (labeled gb), as well as for protein-based Eigen signatures from Thorsson et al. (2019)

(labeled Eigen_sig). Table S6 includes these profile scores, as well as scores for cell types inferred by CIBERSORT and xCell, which showed similar patterns but

were excluded from this figure for the sake of clarity and because they had a high prevalence of 0 values. Hierarchical clustering by Euclidean distance across all

samples separated these signatures into four clusters: Cluster 1: Immune signatures that track with Cibersort absolute score in all PAM50 subtypes. Cluster 2:

Immune signatures that track with Cibersort in PAM50 LumA tumors but show an overall reduction in levels in Basal and LumB tumors, including stromal

(ESTIMATE), fibroblast (MCPcounter), mast cell (Angelova et al., 2015), endothelial cell (MCPcounter), and neutrophil (MCPcounter) signatures (p = 2.17x10�4,

1.31x10�4, 6.35x10�6, 9.63x10�7, 2.51x10�3, respectively for cell type, Wilcoxon rank sum tests comparing LumA to Basal + LumB). Cluster 3: Effector memory

and activated CD4+ and activated CD8+ signatures (Angelova et al., 2015) that were lower in the PAM50 LumA subtype than in all other subtypes (p = 5.79x10�7,

9.29x10�15, and 4.86x10�14, respectively, Wilcoxon rank sum tests comparing LumA to all other tumors). Cluster 4: Interferon gamma (IFNG), STAT1, MHC1, and

antigen presentation machinery (APM1) protein signatures (Thorsson et al., 2019) that tracked with Cibersort immune score in all PAM50 subtypes except LumA,

where they were lower than in Basal (p = 2.08x10�3, 6.67x10�3, 6.81x10�5, and 2.75x10�5, respectively, Wilcoxon rank sum tests comparing LumA and Basal).

B) Boxplot of PD-L1 mRNA expression in each PAM50 subtype. Boxplots show 1.5x the interquartile range for each group, centered on the median.

C) Scatterplot showing that PD-L1 mRNA was well correlated (Spearman) with PD-L1 protein in the DP1 study (Satpathy et al., 2020).

D) Boxplot comparing mutational load between APOBEC-enriched and -unenriched samples. The boxplot shows 1.5x the interquartile range for each group,

centered on the median. P value is from the Wilcoxon rank-sum test.

E) Scatterplots showing that the GO BP nucleotide excision repair pathway (GO:0006289) is negatively correlated with number of non-synonymous mutations

(top), which in turn is positively correlated with PD-L1 mRNA (bottom), in luminal but not basal samples. For clarity, one hyper-mutated basal sample was

excluded from these plots. Spearman’s rank correlation coefficients (rho) and p values are shown.

F) Heatmaps for pairwise Spearman rank correlations between the features shown in Figure 5E within samples from the PAM50 basal subtype in the prospective

(left heatmap) and retrospective (right heatmap) datasets. NER: nucleotide excision repair, BER: base excision repair, MMR: mismatch repair, DR: direct repair,

TLS: translesion synthesis, NHEJ: non-homologous end joining, FA: Fanconi anemia, HR: homologous recombination, DDR: dna damage response (primarily

checkpoint proteins), SSBR: single strand break repair, DSBR: double strand break repair.

G) Multi-omics comparisons of the ATM DNA damage checkpoint kinase in HR+/ERBB2- samples and TNBC samples. ATM mRNA (1st panel) and protein (2nd

panel) levels were unchanged (Wilcoxon rank sum tests: p = 0.052 and p = 0.354, respectively) while the levels of a known auto-phosphorylation site (3rd panel)

and the ATM/ATR target site outlier scores (4th panel) were significantly lower in HR+/ERBB2- than in TNBC tumors (Wilcoxon rank sum tests: p = 0.010 and

p = 6.5x10�5, respectively). Boxplots show 1.5x the interquartile range for each group, centered on the median.

H) Chk2 (CHEK2) protein levels were significantly lower in HR+/ERBB2-luminal than in TNBC-basal tumors (Wilcoxon rank sum tests: p = 8.2x10�7). The boxplot

shows 1.5x the interquartile range for each group, centered on the median.

I) Histogram showing distribution of Rb phosphoprotein (mean of add Rb sites) levels in TNBC samples. Samples were classified as pRb low (yellow) and pRb

(purple) high for the analysis in J).

J) CDK4 and CDK6 kinase activity scores inferred from phosphosite data by PTM-SEA were significantly lower in TNBC samples with low Rb phosphorylation

than in TNBC samples with high Rb phosphorylation (p = 3.5x10�5 for CDK4 activity; p = 7.3x10�7 for CDK6 activity). p values are from Wilcoxon rank sum tests

comparing the two groups shown in I). Volcano plot shows the -log 10 p values (y axis) versus differences for kinase activity scores inferred by PTM-SEA (kinase

target phosphosite sets; x axis). Kinases with p < 0.05 are labeled and colored by higher activity in Rb high (purple) or in Rb low (yellow) samples. delta NES:

difference in median activity score for pRb low and pRb high samples.

ll
OPEN ACCESSResource


	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy
	Introduction
	Results
	Proteogenomic (PG) Characterization of Prospectively Collected Breast Tumors
	Non-negative Matrix Factorization-Based Multi-omics Classification of BRCA
	Subtype-Specific Expression of Targetable, Highly Phosphorylated Kinases
	Proteogenomic Metabolic Profiling and Acetylproteomics Highlight Subtype-Specific Metabolism
	Proteogenomics Analysis of ERBB2+ BRCAs
	PG Analysis of the Immune Tumor Microenvironment (I-TME) Suggests Broader Applicability of Immunotherapy in BRCA
	APOBEC-Mediated Mutagenesis Correlates with an Active I-TME in Luminal BRCA
	Loss of SSBR Proteins Promotes Immunity in Luminal BRCA
	PG Analysis of Rb Status May Inform the Response to CDK4/6 Inhibitor Therapy

	Discussion
	Supplemental Information
	Consortia
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Experimental Model and Subject Details
	Human subjects

	Method Details
	Specimens and clinical data
	Centralized Immunohistochemistry
	Sequencing Sample preparation
	Whole exome sequencing (WES)
	mRNA sequencing

	Proteomic analysis
	Common reference pool construction
	Protein extraction and digestion
	TMT-10 labeling of peptides
	Peptide fractionation
	Phosphopeptide enrichment
	Acetylpeptide enrichment

	LC-MS/MS for proteomic analysis
	Liquid chromatography
	Mass spectrometry


	Quantification and Statistical Analysis
	Genomic data analysis
	Somatic mutation and copy number detection
	Germline short variant discovery from WES
	RNA quantification
	GISTIC and MutSig analysis
	De novo mutational signature extraction
	Mutational signature projection (used in Figure 5B and Figure S7D)

	Proteomics data analysis
	Spectrum quality filtering and database searching
	PSM quality control
	Quantification using TMT ratios
	Two-component normalization of TMT ratio
	Identification of patient-specific single amino acid variants, indels, and spliceforms

	Systems biology analysis
	Sample exclusion
	Dataset filtering
	CNA-driven cis and trans effects
	CMAP analysis
	RNA-protein correlation
	Kinase activity prediction via PTM-SEA
	Pathway projection using ssGSEA
	Analysis of acetylation data
	Kinase phosphorylation outliers
	Multi-omics clustering
	Survival analysis
	Single-omics clustering and application to the Johansson et al. breast proteogenomic dataset
	LinkedOmics data preparation
	Proteogenomic status of ERBB2 and TOP2A
	Immune profiling and downstream analysis
	PD-L1 correlation analysis
	DNA damage response score
	Chromosome instability score
	Determination of stemness score
	CDK4/6-related cell cycle analysis
	RB1 analysis in Cell lines


	Additional Resources



