64 research outputs found

    Transcription in mosquito hemocytes in response to pathogen exposure

    Get PDF
    Mosquito hemocytes are blood cells that are fundamental for combating systemic infection. A study published in BMC Genomics shows that hemocyte gene transcription in response to immune challenge is pathogen-specific and reaffirms the primary role of these cells in immunity

    Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts

    Get PDF
    E. coli injected into larvae and adults aggregate in regions of high hemolymph flow and hemocyte concentration. (A–F) Dissected larval (A–C) and adult (D–F) dorsal abdomens with fluorescently labeled hemocytes (CM-DiI; red) at 4 h after injection with GFP-E. coli (green). In larvae, E. coli preferentially aggregated in the eighth abdominal segment (A), where there is a high concentration of hemocytes (B, circles in C). In adults, E. coli aggregated at the periostial regions of the heart (D), where the periostial hemocytes are located (E, arrows in F). (G–L) Dissected larval (G–I) and adult (J–L) dorsal abdomens with fluorescently labeled hemocytes at 24 h after injection with GFP-E. coli. The aggregation pattern of E. coli in adults at 24 h after treatment was similar to that observed at 4 h post-treatment, but in larvae, fluorescence from E. coli was not observed anywhere in the body because the infection had been largely cleared. Diagonal lines in panels G–I denote the edges of rotated images. Directional arrows: A anterior, P posterior, L lateral. (PDF 679 kb

    Contraction of the Ventral Abdomen Potentiates Extracardiac Retrograde Hemolymph Propulsion in the Mosquito Hemocoel

    Get PDF
    BACKGROUND: Hemolymph circulation in mosquitoes is primarily controlled by the contractile action of a dorsal vessel that runs underneath the dorsal midline and is subdivided into a thoracic aorta and an abdominal heart. Wave-like peristaltic contractions of the heart alternate in propelling hemolymph in anterograde and retrograde directions, where it empties into the hemocoel at the terminal ends of the insect. During our analyses of hemolymph propulsion in Anopheles gambiae, we observed periodic ventral abdominal contractions and hypothesized that they promote extracardiac hemolymph circulation in the abdominal hemocoel. METHODOLOGY/PRINCIPAL FINDINGS: We devised methods to simultaneously analyze both heart and abdominal contractions, as well as to measure hemolymph flow in the abdominal hemocoel. Qualitative and quantitative analyses revealed that ventral abdominal contractions occur as series of bursts that propagate in the retrograde direction. Periods of ventral abdominal contraction begin only during periods of anterograde heart contraction and end immediately following a heartbeat directional reversal, suggesting that ventral abdominal contractions function to propel extracardiac hemolymph in the retrograde direction. To test this functional role, fluorescent microspheres were intrathoracically injected and their trajectory tracked throughout the hemocoel. Quantitative measurements of microsphere movement in extracardiac regions of the abdominal cavity showed that during periods of abdominal contractions hemolymph flows in dorsal and retrograde directions at a higher velocity and with greater acceleration than during periods of abdominal rest. Histochemical staining of the abdominal musculature then revealed that ventral abdominal contractions result from the contraction of intrasegmental lateral muscle fibers, intersegmental ventral muscle bands, and the ventral transverse muscles that form the ventral diaphragm. CONCLUSIONS/SIGNIFICANCE: These data show that abdominal contractions potentiate extracardiac retrograde hemolymph propulsion in the abdominal hemocoel during periods of anterograde heart flow

    Complex effects of temperature on mosquito immune function

    Get PDF
    Over the last 20 years, ecological immunology has provided much insight into how environmental factors shape host immunity and host–parasite interactions. Currently, the application of this thinking to the study of mosquito immunology has been limited. Mechanistic investigations are nearly always conducted under one set of conditions, yet vectors and parasites associate in a variable world. We highlight how environmental temperature shapes cellular and humoral immune responses (melanization, phagocytosis and transcription of immune genes) in the malaria vector, Anopheles stephensi. Nitric oxide synthase expression peaked at 30°C, cecropin expression showed no main effect of temperature and humoral melanization, and phagocytosis and defensin expression peaked around 18°C. Further, immune responses did not simply scale with temperature, but showed complex interactions between temperature, time and nature of immune challenge. Thus, immune patterns observed under one set of conditions provide little basis for predicting patterns under even marginally different conditions. These quantitative and qualitative effects of temperature have largely been overlooked in vector biology but have significant implications for extrapolating natural/transgenic resistance mechanisms from laboratory to field and for the efficacy of various vector control tools

    George V. Hillyer (1943-2015)

    No full text

    Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects

    No full text

    FlyNap (triethylamine) increases the heart rate of mosquitoes and eliminates the cardioacceleratory effect of the neuropeptide CCAP.

    Get PDF
    FlyNap (triethylamine) is commonly used to anesthetize Drosophila melanogaster fruit flies. The purpose of this study was to determine whether triethylamine is a suitable anesthetic agent for research into circulatory physiology and immune competence in the mosquito, Anopheles gambiae (Diptera: Culicidae). Recovery experiments showed that mosquitoes awaken from traditional cold anesthesia in less than 7 minutes, but that recovery from FlyNap anesthesia does not begin for several hours. Relative to cold anesthesia, moderate exposures to FlyNap induce an increase in the heart rate, a decrease in the percentage of the time the heart contracts in the anterograde direction, and a decrease in the frequency of heartbeat directional reversals. Experiments employing various combinations of cold and FlyNap anesthesia then showed that cold exposure does not affect basal heart physiology, and that the differences seen between the cold and the FlyNap groups are due to a FlyNap-induced alteration of heart physiology. Furthermore, exposure to FlyNap eliminated the cardioacceleratory effect of crustacean cardioactive peptide (CCAP), and reduced a mosquito's ability to survive a bacterial infection. Together, these data show that FlyNap is not a suitable substitute to cold anesthesia in experiments assessing mosquito heart function or immune competence. Moreover, these data also illustrate the intricate biology of the insect heart. Specifically, they confirm that the neurohormone CCAP modulates heart rhythms and that it serves as an anterograde pacemaker

    Mosquito Hemocytes Associate With Circulatory Structures That Support Intracardiac Retrograde Hemolymph Flow

    No full text
    A powerful immune system protects mosquitoes from pathogens and influences their ability to transmit disease. The mosquito's immune and circulatory systems are functionally integrated, whereby intense immune processes occur in areas of high hemolymph flow. The primary circulatory organ of mosquitoes is the dorsal vessel, which consists of a thoracic aorta and an abdominal heart. In adults of the African malaria mosquito, Anopheles gambiae, the heart periodically alternates contraction direction, resulting in intracardiac hemolymph flowing toward the head (anterograde) and toward the posterior of the abdomen (retrograde). During anterograde contractions, hemolymph enters the dorsal vessel through ostia located in abdominal segments 2–7, and exits through an excurrent opening located in the head. During retrograde contractions, hemolymph enters the dorsal vessel through ostia located at the thoraco-abdominal junction, and exits through posterior excurrent openings located in the eighth abdominal segment. The ostia in abdominal segments 2 to 7—which function in anterograde intracardiac flow—are sites of intense immune activity, as a subset of hemocytes, called periostial hemocytes, respond to infection by aggregating, phagocytosing, and killing pathogens. Here, we assessed whether hemocytes are present and active at two sites important for retrograde intracardiac hemolymph flow: the thoraco-abdominal ostia and the posterior excurrent openings of the heart. We detected sessile hemocytes around both of these structures, and these hemocytes readily engage in phagocytosis. However, they are few in number and a bacterial infection does not induce the aggregation of additional hemocytes at these locations. Finally, we describe the process of hemocyte attachment and detachment to regions of the dorsal vessel involved in intracardiac retrograde flow
    corecore