5 research outputs found

    Binary Central Stars of Planetary Nebulae Discovered Through Photometric Variability III: The Central Star of Abell 65

    Get PDF
    A growing number of close binary stars are being discovered among central stars of planetary nebulae. Recent and ongoing surveys are finding new systems and contributing to our knowledge of the evolution of close binary systems. The push to find more systems was largely based on early discoveries which suggested that 10 to 15% of all central stars are close binaries. One goal of this series of papers is confirmation and classification of these systems as close binaries and determination of binary system parameters. Here we provide time-resolved multi-wavelength photometry of the central star of Abell 65 as well as further analysis of the nebula and discussion of possible binary--nebula connections. Our results for Abell 65 confirm recent work showing that it has a close, cool binary companion, though several of our model parameters disagree with the recently published values. With our longer time baseline of photometric observations from 1989--2009 we also provide a more precise orbital period of 1.0037577 days.Comment: Accepted for publication in the Astronomical Journa

    Zebrafish RNase T2 genes and the evolution of secretory ribonucleases in animals

    No full text
    Abstract Background Members of the Ribonuclease (RNase) T2 family are common models for enzymological studies, and their evolution has been well characterized in plants. This family of acidic RNases is widespread, with members in almost all organisms including plants, animals, fungi, bacteria and even some viruses. While several biological functions have been proposed for these enzymes in plants, their role in animals is unknown. Interestingly, in vertebrates most of the biological roles of plant RNase T2 proteins are carried out by members of a different family, RNase A. Still, RNase T2 proteins are conserved in these animals Results As a first step to shed light on the role of animal RNase T2 enzymes, and to understand the evolution of these proteins while co-existing with the RNase A family, we characterized RNase Dre1 and RNase Dre2, the two RNase T2 genes present in the zebrafish (Danio rerio) genome. These genes are expressed in most tissues examined, including high expression in all stages of embryonic development, and their expression corresponds well with the presence of acidic RNase activities in every tissue analyzed. Embryo expression seems to be a conserved characteristic of members of this family, as other plant and animal RNase T2 genes show similar high expression during embryo development. While plant RNase T2 proteins and the vertebrate RNase A family show evidences of radiation and gene sorting, vertebrate RNase T2 proteins form a monophyletic group, but there is also another monophyletic group defining a fish-specific RNase T2 clade. Conclusion Based on gene expression and phylogenetic analyses we propose that RNase T2 enzymes carry out a housekeeping function. This conserved biological role probably kept RNase T2 enzymes in animal genomes in spite of the presence of RNases A. A hypothetical role during embryo development is also discussed.</p

    rnaset2 mutant zebrafish model familial cystic leukoencephalopathy and reveal a role for RNase T2 in degrading ribosomal RNA

    No full text
    T2-family acidic endoribonucleases are represented in all genomes. A physiological role for RNase T2 has yet to be defined for metazoa. RNASET2 mutation in humans is linked with a leukoencephalopathy that arises in infancy characterized by cortical cysts and multifocal white matter lesions. We now show localization of RNASET2 within lysosomes. Further, we demonstrate that loss of rnaset2 in mutant zebrafish results in accumulation of undigested rRNA within lysosomes within neurons of the brain. Further, by using high field intensity magnetic resonance microimaging, we reveal white matter lesions in these animals comparable to those observed in RNASET2-deficient infants. This correlates with accumulation of Amyloid precursor protein and astrocytes at sites of neurodegeneration. Thus we conclude that familial cystic leukoencephalopathy is a lysosomal storage disorder in which rRNA is the best candidate for the noxious storage material
    corecore