25 research outputs found

    Intraoperative molecular imaging of colorectal lung metastases with SGM-101:a feasibility study

    Get PDF
    Purpose: Metastasectomy is a common treatment option for patients with colorectal lung metastases (CLM). Challenges exist with margin assessment and identification of small nodules, especially during minimally invasive surgery. Intraoperative fluorescence imaging has the potential to overcome these challenges. The aim of this study was to assess feasibility of targeting CLM with the carcinoembryonic antigen (CEA) specific fluorescent tracer SGM-101. Methods: This was a prospective, open-label feasibility study. The primary outcome was the number of CLM that showed a true positive fluorescence signal with SGM-101. Fluorescence positive signal was defined as a signal-to-background ratio (SBR) ≥ 1.5. A secondary endpoint was the CEA expression in the colorectal lung metastases, assessed with the immunohistochemistry, and scored by the total immunostaining score. Results: Thirteen patients were included in this study. Positive fluorescence signal with in vivo, back table, and closed-field bread loaf imaging was observed in 31%, 45%, and 94% of the tumors respectively. Median SBRs for the three imaging modalities were 1.00 (IQR: 1.00–1.53), 1.45 (IQR: 1.00–1.89), and 4.81 (IQR: 2.70–7.41). All tumor lesions had a maximum total immunostaining score for CEA expression of 12/12. Conclusion: This study demonstrated the potential of fluorescence imaging of CLM with SGM-101. CEA expression was observed in all tumors, and closed-field imaging showed excellent CEA specific targeting of the tracer to the tumor nodules. The full potential of SGM-101 for in vivo detection of the tracer can be achieved with improved minimal invasive imaging systems and optimal patient selection. Trial registration: The study was registered in ClinicalTrial.gov under identifier NCT04737213 at February 2021.</p

    A quantitative assessment of perfusion of the gastric conduit after oesophagectomy using near-infrared fluorescence with indocyanine green

    Get PDF
    Introduction: Anastomotic leakage is a severe complication after oesophageal resection with gastric conduit reconstruction. Poor perfusion of the gastric conduit plays an important role in the development of anastomotic leakage. Quantitative near-infrared (NIR) fluorescence angiography with indocyanine green (ICG-FA) is an objective technique that can be used for perfusion assessment. This study aims to assess perfusion patterns of the gastric conduit with quantitative ICG-FA. Methods: In this exploratory study, 20 patients undergoing oesophagectomy with gastric conduit reconstruction were included. A standardized NIR ICG-FA video of the gastric conduit was recorded. Postoperatively, the videos were quantified. Primary outcomes were the time-intensity curves and nine perfusion parameters from contiguous regions of interest on the gastric conduit. A secondary outcome was the inter-observer agreement of subjective interpretation of the ICG-FA videos between six surgeons. The inter-observer agreement was tested with an intraclass correlation coefficient (ICC). Results: In a total of 427 curves, three distinct perfusion patterns were recognized: pattern 1 (steep inflow, steep outflow); pattern 2 (steep inflow, minor outflow); and pattern 3 (slow inflow, no outflow). All perfusion parameters were significantly different between the perfusion patterns. The inter-observer agreement was poor – moderate (ICC:0.345,95%CI:0.164–0.584). Discussion: This was the first study to describe perfusion patterns of the complete gastric conduit after oesophagectomy. Three distinct perfusion patterns were observed. The poor inter-observer agreement of the subjective assessment underlines the need for quantification of ICG-FA of the gastric conduit. Further studies should evaluate the predictive value of perfusion patterns and parameters on anastomotic leakage

    Fluorescence-guided sentinel lymph node detection in colorectal cancer surgery

    No full text
    Sentinel lymph node (SLN) mapping can be a valuable addition for the treatment of colorectal cancer patients. Nevertheless, conventional lymph node mapping methods using blue dye are limited due to inadequate depth penetration, and the use of a radiocolloid tracer has its logistic hurdles. With near-infrared fluorescence imaging, the SLN can be accurately identified in most patients resulting in more accurate lymph node staging. Current technical challenges and the low negative predictive value of the SLN withhold surgeons from its use in daily practice

    Fluorescence-guided surgery in colorectal cancer; A review on clinical results and future perspectives

    No full text
    Background: Colorectal cancer is the fourth most diagnosed malignancy worldwide and surgery is one of the cornerstones of the treatment strategy. Near-infrared (NIR) fluorescence imaging is a new and upcoming technique, which uses an NIR fluorescent agent combined with a specialised camera that can detect light in the NIR range. It aims for more precise surgery with improved oncological outcomes and a reduction in complications by improving discrimination between different structures. Methods: A systematic search was conducted in the Embase, Medline and Cochrane databases with search terms corresponding to ‘fluorescence-guided surgery’, ‘colorectal surgery’, and ‘colorectal cancer’ to identify all relevant trials. Results: The following clinical applications of fluorescence guided surgery for colorectal cancer were identified and discussed: (1) tumour imaging, (2) sentinel lymph node imaging, (3) imaging of distant metastases, (4) imaging of vital structures, (5) imaging of perfusion. Both experimental and FDA/EMA approved fluorescent agents are debated. Furthermore, promising future modalities are discussed. Conclusion: Fluorescence-guided surgery for colorectal cancer is a rapidly evolving field. The first studies show additional value of this technique regarding change in surgical management. Future trials should focus on patient related outcomes such as complication rates, disease free survival, and overall survival

    Current Intraoperative Imaging Techniques to Improve Surgical Resection of Laryngeal Cancer: A Systematic Review

    Get PDF
    Laryngeal cancer is a prevalent head and neck malignancy, with poor prognosis and low survival rates for patients with advanced disease. Treatment consists of unimodal therapy through surgery or radiotherapy in early staged tumors, while advanced stage tumors are generally treated with multimodal chemoradiotherapy or (total) laryngectomy followed by radiotherapy. Still, the recurrence rate for advanced laryngeal cancer is between 25 and 50%. In order to improve surgical resection of laryngeal cancer and reduce local recurrence rates, various intraoperative optical imaging techniques have been investigated. In this systematic review, we identify these technologies, evaluating the current state and future directions of optical imaging for this indication. Narrow-band imaging (NBI) and autofluorescence (AF) are established tools for early detection of laryngeal cancer. Nonetheless, their intraoperative utility is limited by an intrinsic inability to image beyond the (sub-)mucosa. Likewise, contact endoscopy (CE) and optical coherence tomography (OCT) are technically cumbersome and only useful for mucosal margin assessment. Research on fluorescence imaging (FLI) for this application is sparse, dealing solely with nonspecific fluorescent agents. Evidently, the imaging modalities that have been investigated thus far are generally unsuitable for deep margin assessment. We discuss two optical imaging techniques that can overcome these limitations and suggest how they can be used to achieve adequate margins in laryngeal cancer at all stages

    Data-Driven Identification of Targets for Fluorescence-Guided Surgery in Non-Small Cell Lung Cancer

    No full text
    Purpose: Intraoperative identification of lung tumors can be challenging. Tumor-targeted fluorescence-guided surgery can provide surgeons with a tool for real-time intraoperative tumor detection. This study evaluated cell surface biomarkers, partially selected via data-driven selection software, as potential targets for fluorescence-guided surgery in non-small cell lung cancers: adenocarcinomas (ADC), adenocarcinomas in situ (AIS), and squamous cell carcinomas (SCC).  Procedures: Formalin-fixed paraffin-embedded tissue slides of resection specimens from 15 patients with ADC and 15 patients with SCC were used and compared to healthy tissue. Molecular targets were selected based on two strategies: (1) a data-driven selection using > 275 multi-omics databases, literature, and experimental evidence; and (2) the availability of a fluorescent targeting ligand in advanced stages of clinical development. The selected targets were carbonic anhydrase 9 (CAIX), collagen type XVII alpha 1 chain (collagen XVII), glucose transporter 1 (GLUT1), G protein-coupled receptor 87 (GPR87), transmembrane protease serine 4 (TMPRSS4), carcinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM), folate receptor alpha (FRα), integrin αvβ6 (αvβ6), and urokinase-type plasminogen activator receptor (uPAR). Tumor expression of these targets was assessed by immunohistochemical staining. A total immunostaining score (TIS, range 0–12), combining the percentage and intensity of stained cells, was calculated. The most promising targets in ADC were explored in six AIS tissue slides to explore its potential in non-palpable lesions.  Results: Statistically significant differences in TIS between healthy lung and tumor tissue for ADC samples were found for CEA, EpCAM, FRα, αvβ6, CAIX, collagen XVII, GLUT-1, and TMPRSS4, and of these, CEA, CAIX, and collagen XVII were also found in AIS. For SCC, EpCAM, uPAR, CAIX, collagen XVII, and GLUT-1 were found to be overexpressed.  Conclusions: EpCAM, CAIX, and Collagen XVII were identified using concomitant use of data-driven selection software and clinical evidence as promising targets for intraoperative fluorescence imaging for both major subtypes of non-small cell lung carcinomas

    Colorectal polyps: Targets for fluorescence-guided endoscopy to detect high-grade dysplasia and T1 colorectal cancer

    Get PDF
    Background: Differentiating high-grade dysplasia (HGD) and T1 colorectal cancer (T1CRC) from low-grade dysplasia (LGD) in colorectal polyps can be challenging. Incorrect recognition of HGD or T1CRC foci can lead to a need for additional treatment after local resection, which might not have been necessary if it was recognized correctly. Tumor-targeted fluorescence-guided endoscopy might help to improve recognition. Objective: Selecting the most suitable HGD and T1CRC-specific imaging target from a panel of well-established biomarkers: carcinoembryonic antigen (CEA), c-mesenchymal-epithelial transition factor (c-MET), epithelial cell adhesion molecule (EpCAM), folate receptor alpha (FRα), and integrin alpha-v beta-6 (αvβ6). Methods: En bloc resection specimens of colorectal polyps harboring HGD or T1CRC were selected. Immunohistochemistry on paraffin sections was used to determine the biomarker expression in normal epithelium, LGD, HGD, and T1CRC (scores of 0–12). The differential expression in HGD-T1CRC components compared to surrounding LGD and normal components was assessed, just as the sensitivity and specificity of each marker. Results: 60 specimens were included (21 HGD, 39 T1CRC). Positive expression (score >1) of HGD-T1CRC components was found in 73.3%, 78.3%, and 100% of cases for CEA, c-MET, and EpCAM, respectively, and in <40% for FRα and αvβ6. Negative expression (score 0–1) of the LGD component occurred more frequently for CEA (66.1%) than c-MET (31.6%) and EpCAM (0%). The differential expression in the HGD-T1CRC component compared to the surrounding LGD component was found for CEA in 66.7%, for c-MET in 43.1%, for EpCAM in 17.2%, for FRα in 22.4%, and for αvβ6 in 15.5% of the cases. Moreover, CEA showed the highest combined sensitivity (65.0%) and specificity (75.0%) for the detection of an HGD-T1CRC component in colorectal polyps. Conclusion: Of the tested targets, CEA appears the most suitable to specifically detect HGD and T1 cancer foci in colorectal polyps. An in vivo study using tumor-targeted fluorescence-guided endoscopy should confirm these findings
    corecore