256 research outputs found

    A Classification of Musical Scales Using Binary Sequences

    Get PDF
    Every beginning music student has gone through the four main musical scales: major, natural minor, harmonic minor, and melodic minor. And some might wonder, why those four and not five, or six, or just three? Here we show that a mathematical classification can be used to identify these scales as representatives of certain scale families. Moreover, the classification reveals another scale family, which is much less known: the harmonic major scale. We find that each scale family contains exactly seven scales, which include the modes (dorian, phrygian,...) and other scales such as the Romanian, Gypsi or Hindu-scales. Besides of giving a complete classification of proper heptatonic scales, we also emphasize the pedagogical potential of these {0,1}-representations of scales, as these can help students to navigate and remember complicated scales

    Navigating the flow:individual and continuum models for homing in flowing environments

    Get PDF
    Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to ‘homing’ problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island

    Профессору И. В. Гончарову - 65 лет

    Get PDF
    3 января 2012 г. исполнилось 65 лет со дня рождения профессора, доктора геолого-минералогических наук, профессора кафедры геологии и разведки полезных ископаемых Института природных ресурсов ТПУ Ивана Васильевича Гончарова

    Aggregation of biological particles under radial directional guidance

    Get PDF
    AbstractMany biological environments display an almost radially-symmetric structure, allowing proteins, cells or animals to move in an oriented fashion. Motivated by specific examples of cell movement in tissues, pigment protein movement in pigment cells and animal movement near watering holes, we consider a class of radially-symmetric anisotropic diffusion problems, which we call thestar problem. The corresponding diffusion tensorD(x) is radially symmetric with isotropic diffusion at the origin. We show that the anisotropic geometry of the environment can lead to strong aggregations and blow-up at the origin. We classify the nature of aggregation and blow-up solutions and provide corresponding numerical simulations. A surprising element of this strong aggregation mechanism is that it is entirely based on geometry and does not derive from chemotaxis, adhesion or other well known aggregating mechanisms. We use these aggregate solutions to discuss the process of pigmentation changes in animals, cancer invasion in an oriented fibrous habitat (such as collagen fibres), and sheep distributions around watering holes.JTB classification:21.050, 21.160, 52.250, 71.060</jats:sec

    Modelling microtube driven invasion of glioma

    Get PDF
    Malignant gliomas are notoriously invasive, a major impediment against their successful treatment. This invasive growth has motivated the use of predictive partial differential equation models, formulated at varying levels of detail, and including (i) "proliferation-infiltration" models, (ii) "go-or-grow" models, and (iii) anisotropic diffusion models. Often, these models use macroscopic observations of a diffuse tumour interface to motivate a phenomenological description of invasion, rather than performing a detailed and mechanistic modelling of glioma cell invasion processes. Here we close this gap. Based on experiments that support an important role played by long cellular protrusions, termed tumour microtubes, we formulate a new model for microtube-driven glioma invasion. In particular, we model a population of tumour cells that extend tissue-infiltrating microtubes. Mitosis leads to new nuclei that migrate along the microtubes and settle elsewhere. A combination of steady state analysis and numerical simulation is employed to show that the model can predict an expanding tumour, with travelling wave solutions led by microtube dynamics. A sequence of scaling arguments allows us reduce the detailed model into simpler formulations, including models falling into each of the general classes (i), (ii), and (iii) above. This analysis allows us to clearly identify the assumptions under which these various models can be a posteriori justified in the context of microtube-driven glioma invasion. Numerical simulations are used to compare the various model classes and we discuss their advantages and disadvantages

    Weakly nonlinear analysis of a two-species non-local advection-diffusion system

    Full text link
    Nonlocal interactions are ubiquitous in nature and play a central role in many biological systems. In this paper, we perform a bifurcation analysis of a widely-applicable advection-diffusion model with nonlocal advection terms describing the species movements generated by inter-species interactions. We use linear analysis to assess the stability of the constant steady state, then weakly nonlinear analysis to recover the shape and stability of non-homogeneous solutions. Since the system arises from a conservation law, the resulting amplitude equations consist of a Ginzburg-Landau equation coupled with an equation for the zero mode. In particular, this means that supercritical branches from the Ginzburg-Landau equation need not be stable. Indeed, we find that, depending on the parameters, bifurcations can be subcritical (always unstable), stable supercritical, or unstable supercritical. We show numerically that, when small amplitude patterns are unstable, the system exhibits large amplitude patterns and hysteresis, even in supercritical regimes. Finally, we construct bifurcation diagrams by combining our analysis with a previous study of the minimisers of the associated energy functional. Through this approach we reveal parameter regions in which stable small amplitude patterns coexist with strongly modulated solutions
    corecore