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Abstract
Malignant gliomas are notoriously invasive, a major impediment against their suc-
cessful treatment. This invasive growth has motivated the use of predictive partial
differential equation models, formulated at varying levels of detail, and including (i)
“proliferation-infiltration” models, (ii) “go-or-grow” models, and (iii) anisotropic dif-
fusion models. Often, these models use macroscopic observations of a diffuse tumour
interface to motivate a phenomenological description of invasion, rather than per-
forming a detailed and mechanistic modelling of glioma cell invasion processes. Here
we close this gap. Based on experiments that support an important role played by
long cellular protrusions, termed tumour microtubes, we formulate a new model for
microtube-driven glioma invasion. In particular, wemodel a population of tumour cells
that extend tissue-infiltrating microtubes. Mitosis leads to new nuclei that migrate
along the microtubes and settle elsewhere. A combination of steady state analysis
and numerical simulation is employed to show that the model can predict an expand-
ing tumour, with travelling wave solutions led by microtube dynamics. A sequence
of scaling arguments allows us reduce the detailed model into simpler formulations,
including models falling into each of the general classes (i), (ii), and (iii) above. This

Dedicated to Mark A. Lewis, an inspiring colleague, teacher, and friend, who has shaped mathematical
biology in many ways.

B Thomas Hillen
thillen@ualberta.ca

Nadia Loy
nadia.loy@polito.it

Kevin J. Painter
kevin.painter@polito.it

Ryan Thiessen
rt5@ualberta.ca

1 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada

2 Department of Mathematical Sciences (DISMA), Politecnico di Torino, Turin, Italy

3 Interuniversity Department of Regional and Urban Studies and Planning (DIST),
Politecnico di Torino, Turin, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-023-02025-0&domain=pdf
http://orcid.org/0000-0003-0819-9520


    4 Page 2 of 34 T. Hillen et al.

analysis allows us to clearly identify the assumptions under which these various mod-
els can be a posteriori justified in the context of microtube-driven glioma invasion.
Numerical simulations are used to compare the various model classes and we discuss
their advantages and disadvantages.

Keywords Glioma invasion · Tumor microtubes · Transport equations · Snail-trail
model · Proliferation-infiltration model · Go-or-grow · Anisotropic diffusion ·
Glioma growth · Mathematical oncology

Mathematics Subject Classification 92C50 · 92C17 · 35B25 · 35K57 · 35Q49

1 Introduction

Glioblastomas constitute aggressive and fatal brain cancers, with the majority of
patients dying within a year and a half of diagnosis and only a few percent sur-
viving five years or longer (Ostrom et al. 2014; Wick et al. 2018). Standard treatment
has remained largely the same for more than a decade, consisting of maximum safe
resection of the (visible) tumour mass, radiotherapy, and chemotherapy (Weller et al.
2017; Wick et al. 2018). A major barrier lies in the highly invasive nature of gliomas,
highlighted by a diffuse border and disease re-occurrence at or near the margins of the
treated area (Hou et al. 2006). Consequently, significant research has been devoted to
the mechanisms leading to glioma cell dissemination (Cuddapah et al. 2014; Hormuth
et al. 2022). Glioma cells invade locally (migrating through the extracellular matrix,
ECM), but also exploit oriented structures (e.g. vasculature, white matter fibre tracts)
that facilitate longer movements (Cuddapah et al. 2014). As a consequence, glioblas-
tomas typically present a heterogeneous and anisotropic shape that confounds precise
determination of tumour extent.

Fig. 1 Left: Microscopic image of invading glioma (green) in to healthy brain tissue (red). The microtubes
are clearly visible at the leading edge and as connections between glioma bulk cells (taken at day 23
from Osswald’s video (Osswald and Jung 2015a), with permission). Right: Schematic showing features of
microtube network growth andmodel variables. Microtubes sprout from bulk glioma cells, invading healthy
tissue and infiltrating along aligned structures. Bulk tumour cells divide, with new nuclei subsequently
capable of migrating along microtubes before settling and transitioning to mature glioma cells (color figure
online)
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Recently, a spotlight has been cast on the capacity of various cell populations to
extend long thin nanotube structures (variously named tumour microtubes, tunneling
nanotubes, cytonemes, membrane bridges) that allow direct connection and signalling
between cells (Roehlecke and Schmidt 2020). Within gliomas, certain astrocytomas
form these tumour microtubes (TMTs), with their number and length (up to 500μm)
increasing with the extent of tumour progression (Osswald et al. 2015). The actin-rich
and highly dynamic tubes infiltrate healthy brain tissue at the invasive front, with a
significant fraction following oriented axons. Further, they aid tumour dissemination:
divided nuclei travel downmicrotubes, settling at a location removed from the point of
mitosis. Over time a network is formed, with previously unconnected cells integrated
through coupling to microtube ends. The network matures to the point at which sig-
nalling occurs, long range cell to cell communication indicated through the observation
of intracellular calcium waves. Notably, the emergence of this TMT-connected net-
work in glioma bears resemblance to the networks formed during brain development
and possesses a degree of self-repairing capacity, with greater resistance against both
radiotherapy (Osswald et al. 2015) and chemotherapy (Weil et al. 2017) treatments.

Elements of glioma growth and treatment have been the focus of numerous math-
ematical models over recent years, for example see the reviews (Alfonso et al. 2017;
Hormuth et al. 2022). Given the phenomenal complexity of glioma growth – inter-
actions between glioma cells and their microenvironment, immune cells, vasculature,
molecular signalling systems etc, all embedded within a complex heterogeneous
brain tissue – an all-encompassing model is a futile endeavour at present and mod-
els tend to consider well defined sub-processes (Hormuth et al. 2022). Macroscopic
partial-differential equation (PDE) models that predict invasive spread have formed
a significant part of this literature, stemming from the work of Murray, Swanson and
others (see the reviews of Swanson et al. 2003; Alfonso et al. 2017). Much of this
work is founded on the highly influential PI-model (proliferation-infiltration model),
a variation on the classical Fisher-KPP equation (Murray 2002). The key strength of
this model lies in its simplicity, calling for a minimal set of parameters that facilitates
its fitting to patient-specific data. Of course, the flip-side is lack of detail and various
further models have been proposed.

One extension has been to model at the mesoscale, i.e. the scale of movements
performed by individual glioma cells (Painter and Hillen 2013). This approach allows
preferred cell orientations to be incorporated, for example according to aligned neural
axons or capillaries (Cuddapah et al. 2014), and scaling yields a “fully-anisotropic”
version of the PI model at the macroscale. When applied to environments informed
from diffusion tensor imaging (DTI) datasets, this can lead to improved fit against
patient-acquired imaging data (Swan et al. 2018). Other anisotropic diffusion models
have been formulated, for example motivated from classical phenomenological argu-
ments (e.g. Jbabdi et al. (2005)) or extended to include further mesoscale detail (e.g.
Engwer et al. (2015)).

An extension of these models is to incorporate the long-standing “go-or-grow”
hypothesis for glioma growth, a proposed dichotomy between proliferation and inva-
sion (Giese et al. 1996). While experimental tests into the relevance of go-or-grow
remain ambiguous (e.g. Giese et al. 1996; Corcoran and Del Maestro 2003; Hoek
et al. 2008; Vittadello et al. 2020), models that incorporate this concept have been
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developed in Hatzikirou et al. (2012), Pham et al. (2012), Saut et al. (2014), Stepien
et al. (2018) amongst others, via splitting the glioma cell population into two states:
actively proliferating, or actively migrating.

Another significant branch of modelling has been to explore the mechanical conse-
quences of glioma growth, e.g. Clatz et al. (2005), Konukoğlu et al. (2006), Hogea et al.
(2008), Colombo et al. (2015), Subramanian et al. (2019), Rhodes et al. (2022). While
initial models used a linear stress–strain relationship, more recent models include
nonlinear elasticity models such as the one-term Ogden model (Rhodes et al. 2022).
However, while mechanical effects are undeniably important, here we will focus our
efforts at the diffuse leading invasion edge of a growing tumour. In this region, glioma
cell densities are relatively low andmechanical effects areminimal.Mechanical effects
become important once a bulk tumour of sufficient size is established (Clatz et al. 2005;
Konukoğlu et al. 2006).

Implicit to the models described above is an assumption of independent invaders—
migrating cells infiltrate at the front as individuals—and the resultingmodels possess a
diffusive-type structure that resembles the non-compact border of gliomas. The obser-
vations of Osswald et al. (2015), rather, imply that there can be an interconnectedness
to the invasion process (at least, for certain tumours): new tumour mass can arise from
nuclei that migrate along the microtubes that extend from existing cells. Here we build
a mesoscale model to describe the intricacy of this process. Specifically, our glioma-
TMT transport model includes variables for the mature TMTs, the tips of extending
TMTs, the bulk glioma cells, the migrating nuclei and the resting nuclei. We note
that the explicit variables to describe TMT dynamics distinguishes our model from
a recent approach in Conte et al. (2021), where a flux-saturated model was proposed
that accounts for the role of TMT protrusions and integrin-mediated ECM degradation
at the invading front. Steady state and numerical analysis of the glioma-TMT trans-
port model reveal its capacity to recapitulate features of glioma-microtube growth. In
particular, we observe the formation of a travelling wave profile in which TMT tips
infiltrate at the invasive front, which in turn leads to movement of nuclei along TMTs
into this region and subsequent increase in the tumour bulk.

The complexity of this model, however, precludes an extensive formal travelling
wave analysis. Consequently, we adopt a sequence of assumptions that allow reduction
to simpler forms. First, we reduce to a simpler model for just the TMT tips and
bulk population, but retain the mesoscale (the tips-bulk transport model). Second, we
perform a parabolic scaling analysis that leads to a macroscopic reaction-diffusion
model for the tip and bulk populations, which is either of anisotropic or isotropic
diffusion form (the tips-bulk anisotropic or isotropic model, respectively). Finally,
we reduce to a single reaction-diffusion model for just the bulk population, which
can again be of anisotropic or isotropic form (the bulk anisotropic or bulk isotropic
model, respectively). A notable consequence of the assumptions is that the resulting
models fall into classes related to various previous models for glioma invasion: the
tips-bulk models each have a go-or-grow type structure, the tips-bulk anisotropic and
bulk anisotropic models have anisotropic diffusion structure, and the bulk isotropic
model is of classical PI structure. In Fig. 2, a pathway is laid out that passes through
various models for glioma invasion, where successive models are obtained through
specific assumptions regarding the biological processes included/excluded.
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Fig. 2 Models formulated in this work and their relationship to othermodels in the literature.We formulate a
detailedmodel to describe the TMT-network driven growth of a glioma, at themesoscopic scale. Simplifying
assumptions (A.1, .2) reduce this to a two variablemodel for tips and bulk, also at amesoscopic scale. Scaling
(A.3, .4) allows translation to a macroscopic scale, resulting in an anisotropic-diffusion model for tips and
bulk of go-or-grownature. Thismodel can be reduced further through (A.5) to an isotropic go-or-growmodel
(two variables) or through (A.6) to an anisotropic proliferation-invasion model (one variable). From each
of these, subsequently applying the alternative assumption reduces to the simplest model in our hierarchy,
an isotropic PI model

2 Glioma-TMT transport model

2.1 Observations for model formulation

Here we describe some key observations of TMT dynamics based on the study of
Osswald et al. (2015), focusing on thosemost relevant to themodel formulation. These
observations are principally derived from a murine model of glioma development,
accompanied by histological analysis of human tissue sections. Note that the data
in Osswald et al. (2015) is accompanied by four supplemental videos, which were
instrumental in our parameter estimation.

(O1) TMTs are primarily a phenomenon of gliomas of astrocytoma origin: for
example, while a frequent feature of astrocytomas, they are infrequent within
oligodendrogliomas. Further, they become increasingly present as the tumour
progresses, with tissue sections of glioblastoma multiforme (GBM) indicating
their presence in 93% of cases.

(O2) At the invasion front, TMTs infiltrate brain tissue in a highly dynamic and
searching fashion, rapidly extending and retracting.

(O3) Both the number and length of TMTs increase with tumour progression, fre-
quently with more than 4 per cell and TMTs occasionally extending more than
500μm from their point of origin. The actin-rich nature of TMTs indicates their
potent motility, and thin TMTs frequently branch from mature ones.

(O4) TMTs are frequently used as tracks for the movement of nuclei, where mitotic
events are followed by the separation of nuclei and movement along TMTs
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(with mean speeds 66 ± 35μmday−1), potentially settling more than 100μm
apart and becoming part of the bulk.

(O5) A significant fraction of TMTs follow axons, tightly coupling the structure of
the TM network to inherent brain anisotropy.

(O6) With time, an increasing number of TMTs were found to sprout from one cell
and connect to a second. This growing intercellular connection stems partly
from the division and subsequent separation of nuclei inside the network,
described above, but also from the pairing of open TMT ends to previously
unconnected cells (anastomosis).

(O7) Increasing intercellularity opens the pathway to growing communicationwithin
the network, exemplified by long range calcium signalling waves. Notably,
TMT networks appear to be more resilient against treatment. Damaged parts
are identified within the network structure and a targeted healing process is
triggered.

2.2 The full glioma-TMT transport model

We first remark that the formation of the TMT network bears resemblance to other
processes of network growth in biology, ranging from hyphae growth in filamentous
fungi (the formation of long, branched filament structures, that extend through the soil
and increase nutrient uptake (Steinberg et al. 2017)) to angiogenesis, i.e. formation
of new vasculature. Many continuous models for such processes rely on the “snail-
trail” approach, developed in Edelstein (1982) to describe filamentous fungal growth,
and subsequently adapted to model angiogenesis in Balding and McElwain (1985).
Specifically, this model describes the network via the densities of two key variables:
the “tips” of the network-forming structures, a motile population that moves through
the environment, and the “stalks”, a sessile population laid down in the rear of tip
movement. The name snail-trail refers to the similarity to the slime-trails left by
snails, with the microtube tips representing the snail and the microtube representing
the stalks.

Accordingly, we develop a kinetic-transport model for TMT driven growth, in
which the network is represented by two variables: the TMT tips, P(t, x, v), and
the (mature) TMTs, M(t, x, v), formed as the tip extends. In addition, we consider
variables for migrating nuclei, N (t, x, v), the bulk tumour mass, B(t, x), and a pre-
bulk state, R(t, x), duringwhich nuclei have stoppedmigrating andmature into bulk.A
schematic is given in Fig. 1. In the above, each of P(t, x, v), M(t, x, v) and N (t, x, v)

are structured according to time t ≥ 0, position x ∈ Ω , whereΩ ⊂ R
n , and orientation

v ∈ V = Sn−1, being Sn−1 the unit sphere. B(t, x) and R(t, x) vary onlywith time and
position. Note that within the present iteration of the model we exclude the possibility
of glioma cell invasion outside the TMT network, i.e. we do not allow movement of
unconnected glioma cells. This restriction allows us to focus on the extent to which
dissemination of cells via a developing TMT network can drive expansion of the
tumour.
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The model equations are given by

Pt + spv · ∇P = LP − αP − δPB + βΨ B

(
1 − B

K

)
(1)

Mt = sp P − κ1NM (2)

Bt = (ρB + γ R)

(
1 − B

K

)
(3)

Nt + snv · ∇N = μn(mN̄ − N ) + ηBM

(
1 − B

K

)
− κ2NM − κ3(M)N (4)

Rt = κ2NM − γ R. (5)

We now discuss in detail the (modelling) assumptions for each variable, referring
to the observations (O1-7) listed above. A summary of variables and parameters is
given in Table 1. We also list there a set of base-level values, the rationale for which
will be reserved for Sect. 4.1.

1. TMT tips P(t, x, v), are measured as a density (i.e. number per unit volume of
physical and velocity space). The tips move through space with constant speed
sp > 0 in a somewhat random “probing” fashion (O2), but with a directional bias
according to the anisotropic tissue structure (O5). The oriented structure of the
background tissue is encoded within a distribution q(x, v), which for simplicity
is assumed to be time-invariant. Tips are further assumed to have a tendency to
grow in a straight-line direction, which we model by a persistent random walk as
governed by a velocity-jump process (Othmer et al. 1988); we denote the corre-
sponding equilibrium distribution as Ψ (v). Equation (2) is stated in terms of the
kinetic-transport equation description, seeAppendixA,wherewe also defineΨ (v)

explicitly in (34). Noting that TMTs frequently retract (O2), but can also emerge
from existing TMTs (O3), we consider an effective loss rate α as the difference: α
can therefore be positive or negative. Tips are generated through sprouting from
bulk cells, but can also be lost through connecting with bulk cells (anastomosis,
O6). Anastamosis is assumed to arise on contact between tips and bulk cells, with
a rate δ per bulk cell. The logistic form for forming new sprouts from bulk cells
provides a saturation on the formation of new network as the tumour reaches its
carrying capacity. The growth rate of new sprouts is β ≥ 0, oriented in directions
according to the tissue structure. We assume that the new sprouts are generated
along the oriented structures of the underlying tissue such as white matter tracks
and blood vessels. Therefore, we assume that they have the direction of the equi-
librium distribution Ψ (v) that thus multiplies the growth term.
As we aim at recovering an aggregate, or macroscopic, description of the system,
we introduce the macroscopic density of the tips as

P(t, x) =
∫
V
P(t, x, v)dv. (6)
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Table 1 Model variables and parameter values, their meaning and units, and a selection of base values

Variable Meaning Initial values Units

P(t, x, v) TMT tip density (orientation v) 0 #tips/mm3

M(t, x, v) TMT network density (orientation v) 0 #mms of TMTs/mm3

B(t, x) Bulk density 0.1 K #cells/mm3

N (t, x, v) Migrating nuclei density (orientation v) 0 #nuclei/mm3

R(t, x) Pre-bulk density 0 # cells/mm3

Table 1 continued

ODE parameters Meaning Base values Units

α Tip loss rate 0.2 1/hr

β Rate of tips produced per bulk cell 0.6 ti p units/(bulk units · hr)
δ TMT to bulk connection rate 10−5 1/(bulk units · hr)
κ1 TMT conversion to pre-bulk 2 × 10−6 1/(nuclei units · hr)
κ2 Nuclei conversion to pre-bulk 2 × 10−6 1/(network units · hr)
κ3(M) Nuclei stopping in absence of MT 0.1 exp(−M(t, x, v)) 1/(hr)

ρ Bulk to bulk division (direct growth) 6 × 10−4 1/hr

η Bulk to nuclei division
(indirect growth)

10−6 1/(network units · hr)

K Bulk carrying capacity 25000 cell uni ts

γ Pre-bulk maturation rate 0.02 1/hr

ϕ Ratio of tips over bulk cells 1.6 1

Table 1 continued

Spatial parameters Meaning Base values Units

sp Tip invasion speed 0.0048 mm/hr

sn Nuclei movement speed 0.0028 mm/hr

μp Tip turning rate 1.8 1/hr

μn Nuclei turning rate 0.01 1/hr

ν Convex combination parameter 1/2 1

2. TMTs M(t, x, v), are measured as the number of units of lengths of TMTs per
unit volumewith orientation v, where we have adopted the “snail-trail” framework
(Edelstein 1982) to assume that TMT tip movement leads to the formation of
microtube in its wake. Loss of the microtube occurs as nuclei migrating along
the network (O4) come to a rest and transition, with a section of microtube, into
pre-bulk cells. For simplicity we assume this occurs at a rate proportional to NM .
Analogous to the statement above for the tips, we define the macroscopic density
of the microtubes
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M(t, x) =
∫
V
M(t, x, v)dv. (7)

3. Bulk B(t, x), is assumed to grow until reaching a carrying capacity K > 0. Bulk
growth occurs either through direct bulk cell division, at a rate ρ > 0, or through
the maturation of pre-bulk cells into bulk, at a rate γ > 0. Note that we assume
there is no movement/transport of bulk tumour cells, except through the below
described dissemination of nuclei along the microtube network. We also assume
that the TMT tips, TMTs, and nuclei carry essentially no volume, i.e. they do not
contribute to the carrying capacity of the bulk.

4. Migrating Nuclei N (t, x, v), are generated in some proportion of bulk divisions,
with at least one of the divided nuclei travelling along theTMTnetwork and settling
at a point distant from the division site. As for tip movement, their dynamics are
described in terms of a kinetic-transport equation.Nuclei are assumed tomovewith
a characteristicmovement speed sn , andwith a direction ofmovement chosen from
the (normalised) distribution of the microtube network, i.e.

m(t, x, v) = 1

M(x, t)
M(t, x, v).

Nuclei stop moving based on two processes. There is a spontaneous stopping with
rate κ2 along tumour microtubes. They will also stop moving once they reach the
end of a microtube. We describe this here with a microtube-density dependent
removal rate κ3(M), which is assumed to decrease to negligible levels when the
microtube network density is high. Themacroscopic density of the nuclei is defined
as

N (t, x) =
∫
V
N (t, x, v)dv. (8)

5. Pre-bulk R(t, x), forms as migrating nuclei come to a rest and, with surrounding
microtube, transition into a bulk cell. We call this a pre-bulk stage and assume that
the transition to pre-bulk occurs with rate parameter κ2 and according to the local
microtube density. Since the pre-bulk has no movement orientation, we use the
integrated terms

NM(t, x) =
∫
V
N (t, x, v)M(t, x, v) dv.

The pre-bulk matures into bulk, with rate γ , at which point it can start undergoing
mitosis. We note, though, that if the bulk is at capacity then the pre-bulk simply
decays.

Unspecified in (1) is the choice of the turning operator L, that describes the reorien-
tation of TMT tips as they extend through brain tissue. This operator is taken to be of
general form
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LP(v) = −μp P(v) + μp

∫
V
T (v, v′)P(v′)dv′, (9)

where μp is the rate that the tips turn and T (v, v′) defines the turning kernel. Here we
ignore the dependence on space x and focus on the v dependence of the turning terms.
In our full model the terms below q, T1, T2, T will all depend on space x .

Noting that TMTs have both a tendency to follow the direction of nerve fibres and
maintain a relatively straight line (i.e not bending excessively), we choose a turning
kernel that combines a path-following term, denoted by T1, and a persistent random
walk, denoted by T2. Specifically,

T1(v, v′) = q(v), T2(v, v′) = 1

ω

(
1 + a

v · v′

|v||v′|
)

,

where ω = |V | and 0 ≤ a ≤ 1 is a persistence parameter (Hillen 2006; Othmer
and Hillen 2000). The function q(v) describes the orientation response to aligned
structures (e.g. nerve fibres, capillaries etc) and can potentially be informed through
DTI imaging (Swan et al. 2018). As described more fully in Appendix A, the turning
kernel is taken to be a convex combination of T1 and T2:

T (v, v′) = νT1(v, v′) + (1 − ν)T2(v, v′) = νq(v) + 1 − ν

ω

(
1 + a

v · v′

|v||v′|
)

,

0 ≤ a ≤ 1

where the parameter ν ∈ [0, 1] is the anisotropy parameter, which reflects the weight-
ing between persistence and aligned structures on the orientation.

In terms of nuclei movement, the choices in (4) stipulate that nuclei move with
speed sn , change direction with rate μn , and assume the reorientation at a turn follows
the angular distribution of the mature TMT network.

Finally, we note that (1)-(5) must be equipped with suitable boundary conditions.
The brain sits inside the skull, which is (mostly) rigid. However, with the analysis
presented here at the micrometer to milimeter scale we can conveniently assume that
the tumour origin is sufficiently far away from the skull. This in turn allowsus to assume
an (effectively) infinite domain and avoids the need to specify boundary conditions.
If the tumour originates closer to the skull or another boundary, other conditions may
be necessary.

2.3 Analysis of the kinetic part

To initiate a deeper understanding of the dynamics of model (1–5), we begin with an
analysis of the kinetic terms, i.e. the time-only dynamics for a system that excludes
spatial terms. In other words, we assume all variables P, M, B, N and R are constant
in space and velocity, and only depend on time. Certain terms in Eqs. (1–5) contain
integrated variables, for example
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M̄ =
∫
V
M(t)dv = ωM(t),

which generates an additional parameter ω = |S1| = 2π in 2-D and ω = |S2| = 4π
in 3-D. Integrating and introducing κ̃i = κi/ω, for i = 1, 2, 3. We have

Pt = −αP − δPB + βB

(
1 − B

K

)
, (10)

Mt = sp P − κ̃1NM, (11)

Bt = (ρB + γ R)

(
1 − B

K

)
, (12)

Nt = ηBM

(
1 − B

K

)
− κ̃2NM − κ̃3(M)N , (13)

Rt = κ̃2NM − γ R, (14)

where we have dropped the · over P, M and N as the only dependence in both cases
is on t . The only steady states of the above system are part of two continua of steady
states: the set of disease-free equilibria

E1 := {(0, M1, 0, 0, 0), M1 ≥ 0},

and the set of diseased equilibria

E2 := {(0, M2, K , 0, 0), M2 ≥ 0}.

We note that in both cases the density of tumour microtubes is a free parameter. The
valueM1 indicates that a certainmicrotube residue can persist andwill not be removed.
The parameter M2 is an effective carrying capacity for the TMT, which depends on
the initial conditions and the time dynamics of the entire system.

Linearizing the above model about the steady states, we find the following Jacobian
for the disease-free state

J (0, M1, 0, 0, 0) =

⎛
⎜⎜⎜⎜⎝

−α 0 β 0 0
sp 0 0 −κ̃1M1 0
0 0 ρ 0 γ

0 0 ηM1 −κ̃2M1 − κ̃3(M1) 0
0 0 0 κ̃2M1 −γ

⎞
⎟⎟⎟⎟⎠ .

When M1 is zero we obtain eigenvalues −α,−γ, 0, 0, ρ, indicating that the disease
free state is unstable. For general M1 > 0 we find two eigenvalues (λ1 = −α, λ2 = 0)
and three further by solving the cubic equation

(λ − ρ)(λ + κ̃M1 + κ̃3(M1))(λ + γ ) − γ ηM2
1 κ̃ = 0.

123



    4 Page 12 of 34 T. Hillen et al.

Noting that this cubic has positive leading order term and negative vertical intercept,
it must have at least one positive real root. Consequently, the disease-free state is
unstable. In particular, it appears that introducing a small bulk with or without a
small residual of tumour microtubes is sufficient to induce movement away from the
disease-free state and initiate tumour growth.

The Jacobian for the diseased state is

J (0, M2, K , 0, 0) =

⎛
⎜⎜⎜⎜⎝

−α − δK 0 −β 0 0
sp 0 0 −κ̃1M2 0
0 0 −ρ 0 0
0 0 −ηM2 −κ̃2M2 − κ̃3(M2) 0
0 0 0 κ̃M2 −γ

⎞
⎟⎟⎟⎟⎠ .

Here all five eigenvalues are directly evaluated as λ1 = −α − δK , λ2 = 0, λ3 =
−ρ, λ4 = −κ̃M2 − κ̃3(M2), λ5 = −γ and the diseased state is stable, except for the
eigenvalue 0 that corresponds to the continuum of steady states parameterised by M2.
Therefore, we expect growth of the tumour that eventually settles on some diseased
state within E2.

2.4 Dynamics of the glioma-TMT transport model

To demonstrate that the model captures essential features of glioma-TMT dynamics,
we perform some preliminary simulations. Note that amore detailed suite of numerical
simulations will be performed later (in Sect. 4), where we also provide details of the
model parameters; where possible, these are derived from the observations of Osswald
et al. (2015), see Table 1.

First we consider the temporal dynamics by simulating the ODE model (10–14),
see Fig. 3. We observe in Fig. 3(A) that early dynamics reveal a quick growth of TMT
tips (red), followed by a steady growth of the TMT network (blue). The growth of bulk
(black), migrating nuclei (tan) and pre-bulk (purple) follows after some delay. As the
bulk approaches the carrying capacity (Fig. 3(B)), the mature TMT network converges
towards a steady state (M2), with the components (P, N , R) converging to zero.

Variations of parameters about the default parameters indicate that the system is
most sensitive to the TMT growth rate sp and the tip production rate β. (Osswald
et al. 2015) indicate that the TMT dynamics could provide new treatment targets for
chemotherapy.We test this here in the ODEmodel by reducing the tips production rate
by a factor 60 (in Fig. 3(C)) and the TMT growth rate sp by a factor 10 (in Fig. 3(D)).
Reducing the sizes of these parameters leads to significantly delayed tumour growth
and a mature TMT network density that settles to a lower value at equilibrium.

Notably, these results are consistent with observations in Osswald et al. (2015),
where engineered GBMSCs (glioblastoma multiforme stem cells) with a genetic
knockdown of GAP-43 (a protein relevant for the formation of neurite-like membrane
protrusions) results in a lower speed of invasion, structurally abnormal TMTs with
reduced branching, smaller proliferation capacity and, eventually, a marked reduction
of the tumour size. In terms of other parameters, we found that varying the pre-bulk
to bulk maturation rate γ did not substantially change the overall dynamics, but an
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increase in γ would reduce the size of the pre-bulk population (simulations not shown).
Increasing the bulk growth rate ρ, unsurprisingly, leads to faster overall growth and a
reduction in the delay between TMT network growth and bulk growth. Increasing the
rate of nuclei division η leads to an unrealistically large moving nuclei component,
while variation in the rate of nuclei transport (sn) along TMTs had relatively little
impact on the dynamics. A common feature of all simulations is that tips and TMTs
lead the growth, followed by the bulk and the nuclei. Eventually P, N , R converge to
zero and M and B settle at a non-zero equilibrium, consistent with the predictions of
the steady state analysis.

InFig. 3(E)we simulate a treatment at time t = 6000,where all bulk tumour cells are
removed but all other components are left behind. We observe that a new tumour soon
develops following this procedure, which grows from nuclei and pre-bulk integrated
within the remaining TMT network. This implies that it would be important to also
remove any invading TMT network for successful treatment.

We proceed to explore spatiotemporal aspects of growth, concentrating on a one-
dimensional setting that represents a transect line through the tumour, see Fig. 4. Here,
an initial tumour mass is seeded at the left of the domain, with the right portion
therefore representing non-diseased brain tissue. Simulations suggest the emergence
of travelling wave/pulse profiles, i.e. where model variables evolve to profiles with
constant shape and moving into the non-diseased tissue with constant speed. The
wavefronts for tips (red), microtubes and nuclei (magenta) are a little ahead of the bulk
(black) and pre-bulk (tan) waves. This clearly shows the invasive nature of microtubes,
which provide channels for the migrating nuclei to infiltrate and seed new bulk. In
the rear of the wave, the tumour bulk reaches a carrying capacity while the free tips
and the migrating nuclei approach zero. The microtubes settle on a non-zero steady
state value, consistent with observations of an established network of microtubes that
interlink glioma cells in the tumour mass.

3 Model Reductions

As mentioned earlier, the spatial spread of glioma has formed the focus of many
modelling studies (Swanson et al. 2003, 2008; Painter and Hillen 2013; Engwer et al.
2015; Swan et al. 2018; Stepien et al. 2018; Conte and Surulescu 2021), with many of
these falling into a classical reaction-diffusion framework. With the aim of reaching a
model that is of similar tractability, we perform a sequence of model reductions. The
first step is a quasi-steady state assumption for the (non tip) TMTs and nuclei, which
directly leads to models of “go-or-grow” type, popular in various glioma modelling
studies (Fedotov and Iomin 2008; Chauviere et al. 2010; Pham et al. 2012; Hatzikirou
et al. 2012; Gerlee and Nelander 2012; Saut et al. 2014; Stepien et al. 2018). Further
scaling leads to “fully anisotropic” models, which have been explored in a number
of recent studies (Painter and Hillen 2013; Engwer et al. 2015; Swan et al. 2018)
and aim to account for the impact of tissue anisotropy on glioma growth. Finally, an
assumption of isotropy leads to the prominent proliferation-infiltration type models,
e.g. Swanson et al. (2003, 2008); Rockne et al. (2010); Jacobs et al. (2019), which fall
into the classical class of Fisher-KPP equations, and therefore admit straightforward
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Fig. 3 Simulation of the ODE model (10–14), showing tips (P red), TMTs (M blue), bulk cells (B black),
nuclei (N magenta), and pre-bulk (R brown).Unless stated otherwise, parameter values are chosen according
to the reference set listed in Table 1. (A) Initial evolution up to time t = 1500 hours. (B) Dynamics up to
time t = 6000 hours, showing approach to the steady state. (C) Dynamics under reduced tip production
(β reduced to 0.01. (D) Reduced MT growth rate (sp reduced to sp = 0.00048). (E) Simulated treatment
in which bulk cells are removed at time t = 6000 hours (vertical green line), but microtube network is left
intact. For all simulations, initially we set P(0) = 0, M(0) = 0, B(0) = 0.01K , N (0) = 0, R(0) = 0
(color figure online)

deduction of the wave speed. Within each simplifying step we stress the underlying
assumptions, clarifying the biological processes retained and those that are neglected.
Later, a numerical analysis is used to investigate (quantitatively) the loss of information
as we proceed through the reductions. A schematic showing the step-by-step sequence
of assumptions as we proceed through the reductions is provided in Fig. 2, and a
summary of these scaling arguments is provided in Sect. 3.5.
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Fig. 4 Illustrative dynamics of the full glioma-TMT transport model (1–5) for a quasi-1D setting, describing
invasion into a portion of tissue of length 1mm and characterised by an isotropic fibre arrangement. Initially
we assume the bulk is described by a half-Gaussian, with maximum density at the origin and equal to the
carrying capacity (B(t = 0, x = 0) = K = 30) and standard deviation 0.05mm. All other variables are
initialised as zero. Each frame plots the distributions at (top to bottom) 500, 1000, 10000 and 20000h.
Other initial conditions with tumour seeded on the left of the domain show a very similar invasion process
(simulations not shown). Parameter values as in Table 1

3.1 Reduction to go-or-grow typemodels

As the first step, we consider the following set of assumptions. Assumptions (A):

(A.1) We assume that the dynamics involving nuclei and pre-bulk are in quasi-
equilibrium.

(A.2) Microtubes are assumed to be in quasi-equilibrium and follow the directions of
the tips.

In other words, we consider Eqs. (2), (4) and (5) to be in quasi-equilibrium. Then (5)
in equilibrium implies

γ R = κ2NM,

and from (2) we have

sp P = κ1NM .

Taken together,

γ R = σ

∫
V
Pdv = σ P, with σ = sp

κ2

κ1
.
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Using this relation in the bulk Eq. (3), the system for (P, B) is observed to decouple
from the remainder and we obtain the tips-bulk-transport model:

tips Pt + spv · ∇P = LP − αP − δPB + βΨ B

(
1 − B

K

)
, (15)

bulk Bt = (ρB + σ P̄)

(
1 − B

K

)
. (16)

An inspection of the terms in (15–16) reveals that bulk grows but it does not move
spatially, while the tips explore the environment via a correlated random walk. This
tip expansion leads (via the assumed instantaneous processes of microtube extension,
nuclei movement, transition to pre-bulk and maturation to bulk) to the effective seed-
ing of new bulk and overall tumour spread. Model (15–16) is therefore essentially of
a go-or-grow structure (Fedotov and Iomin 2008; Chauviere et al. 2010; Pham et al.
2012; Hatzikirou et al. 2012; Gerlee and Nelander 2012; Saut et al. 2014; Stepien
et al. 2018), with the difference being that typical go-or-grow models are compart-
mentalised into two cell sub-populations (an actively-invading compartment and an
actively-proliferating compartment) while the invaders here are not cells but TMT tips.
Nevertheless, the go-or-grow type model arises naturally from the microtube invasion
model. Moreover, with respect to the fact that here the invaders are TMT tips, we
remark that in our model invading cells move by means of the TMT network and that,
thanks to assumption (A.2) the invading tips are proportional to the product of the
TMT density and of the nuclei of the invading cells.

3.2 Parabolic scaling

Aparabolic scaling is used to separate time scales. Specifically, rather than considering
a microscopic timescale of seconds and a spatial scale of micrometers, we transform
to macroscopic scales of hours and centimeters. For the parabolic scaling we make
the following assumptions.

(A.3) A rescaling of time and space to the macroscopic scales τ = ε2t , ξ = εx ,
where ε << 1 is a small parameter.

(A.4) Reaction terms scale as ε2, i.e. reaction terms are slow.

The two assumptions (A.3) and (A.4), applied to (15), lead to

ε2Pτ + εspv · ∇ξ P = LP − ε2
(

αP + δPB − βΨ B

(
1 − B

K

))
. (17)

We assume the tip density P(τ, ξ, v) can be written as a regular expansion in ε

P(τ, ξ, v) = P0(τ, ξ, v) + εP1(τ, ξ, v) + ε2P2(τ, ξ, v) + . . . .
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and we substitute this expansion into the scaled Eq. (17), collecting terms of equal
order in ε. The leading order terms ε0 are

L(P0) = 0,

Which implies that P0 ∈ kerL. We computed the null space of L in Appendix A in
Lemma 1, thus

P0(τ, ξ, v) = P̄0(τ, ξ)Ψ (ξ, v), (18)

where P̄0(τ, ξ) depends on space and time but not on velocity. The terms of order ε1

are

spv · ∇P0 = L(P1).

At this point, we posit that P1 ∈ 〈Ψ 〉⊥. On this space we can invert L (see Hillen
(2006)), yielding

P1 = − sp
μp

(v · ∇P0) . (19)

Indeed, P1 ∈ 〈Ψ 〉⊥, since

〈Ψ , P1〉 =
∫
V

Ψ (v)

(
− sp

μp

(
v · ∇ P̄0Ψ

)) dv

Ψ (v)
= − sp

μp
∇ P̄0 ·

∫
V

(vΨ ) dv = 0.

Where the last integral is zero since Ψ (v) from (34) is symmetric in v. Next, we look
at the terms of order ε2:

(P0)τ + spv · ∇P1 = LP2 −
(

αP0 + δP0B − βΨ B

(
1 − B

K

))
.

Integrating this equation over V and substituting P0 from (18) and P1 from (19) yields
a macroscopic system that can be combined with the bulk Eq. (16):

(P̄0)τ = s2p
μp

∂i∂ j

(
P̄0

∫
V

vinv
j
nΨ dv

)
−

(
α P̄0 + δ P̄0B − βB

(
1 − B

K

))
, (20)

Bτ = (ρB + σ P̄0)

(
1 − B

K

)
, (21)

where we use summation convention on repeated indices. Note that several details
within this calculations have been omitted, since they are standard and can be found
elsewhere (for example, see Hillen (2006)). We can simplify the notation by setting
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the leading order term as U = P̄0 and using tensor notation for the diffusion term.
Specifically,

Uτ = ∇∇ : (DΨU ) − αU − δUB + βB

(
1 − B

K

)
, (22)

Bτ = (ρB + σU )

(
1 − B

K

)
, (23)

with diffusion tensor

DΨ = s2p
μp

∫
V

vvTΨ (v)dv. (24)

We remark that the system (22–23) is again a model of go-or-grow type, but here the
movement term is an anisotropic diffusion term. We refer to (22–23) as the tips-bulk-
anisotropic model.

3.3 The isotropic case

In Othmer and Hillen (2000) we classified choices for Ψ (v) such that the diffusion
tensor in (24) is isotropic, i.e. proportional to the identity matrix. One such case occurs
when Ψ depends only on the speed sp, not on the direction: Ψ (spv) = Ψ (sp). Then,
DΨ = dI for some constant d > 0. This generates the next assumption.
(A.5)We assume DΨ = dI for some constant d > 0.
Consequently, we obtain the tips-bulk-isotropic model

Uτ = dΔU − αU − δUB + βB

(
1 − B

K

)
, (25)

Bτ = (ρB + σU )

(
1 − B

K

)
. (26)

This model (25, 26) is the standard go-or-grow model, which has been studied in
several publications (Chauviere et al. 2010; Pham et al. 2012; Hatzikirou et al. 2012;
Stepien et al. 2018).

3.4 A single equation for the bulk

To obtain an equation for the bulk alone, we make the natural assumption that, on
average, the number of tips per bulk is constant, i.e.
(A.6) U ≈ ϕB.

We use parameter estimation in Sect. 4.1 to estimate ϕ. Now consider the time
derivative of the sum of Eqs. (25, 26) and obtain

Uτ + ϕBτ = dΔU − αU − δUB + βB

[
1 − B

K

]
+ σϕU

[
1 − B

K

]
+ ρB

[
1 − B

K

]
.
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Using the above assumption (A.6), we can write this in terms of B alone obtaining the
isotropic bulk model,

Bτ = d

2
ΔB − α

2
B − δ

2
B2 +

[
β + ρϕ

2ϕ
+ σϕ

2

]
B

[
1 − B

K

]
. (27)

The same approximation can be performed for the anisotropic model (22–23) and
we get

Bτ = ∇∇ :
(
DΨ

2
B

)
− α

2
B − δ

2
B2 +

[
β + ρϕ

2ϕ
+ σϕ

2

]
B

[
1 − B

K

]
. (28)

We note that the above model has been used in, for example (Swan et al. 2018;
Painter and Hillen 2013; Engwer et al. 2015), to model glioma growth based on
diffusion-tensor imaging data.

The Eq. (27) is simply a standard Fisher-KPP model with isotropic diffusion and a
monostable forcing function. In particular, we can write (27) as

Bτ = d̂ΔB + μ̂B

(
1 − B

K̂

)
(29)

with

d̂ = d

2
, μ̂ = β + ρϕ

2ϕ
+ σϕ

2
− α

2
, K̂ = K

2μ̂
β+ρϕ

ϕ
+ σϕ + δK

.

Within the glioma modelling literature, model (29) is referred to as the PI-model
(e.g. Swanson et al. (2008); Jacobs et al. (2019)). Note that earlier iterations of the
PI-model used an exponential growth term for the proliferation, while others have
favoured logistic growth (e.g. Swanson et al. (2008); Swan et al. (2018)). Here we
have shown how the PI model can be derived from models for microtube-network
driven expansion. The logistic growth in the macroscopic model (29) is obtained by
assuming a logistic growth of both the tips and the bulk at the mesoscopic level in (1)
and (3).

The formulation as a Fisher-KPP model (29), of course, allows direct computation
of a minimal invasion speed:

c∗ = 2
√

μ̂d̂ =
√
d

(
ρ − α + β

ϕ
+ σϕ

)
. (30)

We note that the invasion speed (30) increases with the tip production rate β, the bulk
growth rate ρ, and in the diffusion coefficient d. It decreases for increasing tip removal
rate α.
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3.5 Summary of model reductions

To conclude this section we summarize the model reductions and the corresponding
models. Figure2 lists the series of models, with the successive assumptions:

(A.1) Nuclei dynamics are in quasi-equilibrium.
(A.2) Microtubes are in quasi-equilibrium with the tips.
(A.3) Rescaling of macroscopic time and space scales τ = ε2t , ξ = εx , where

ε << 1.
(A.4) Reaction terms scale like ε2.
(A.5) Isotropy DΨ = dI for some constant d > 0.
(A.6) Tips and bulk are proportional; U ≈ ϕB.

4 Numerical comparisons

4.1 Parametrization

As units, we use a spatial scale of millimetres (mm) and measure time in hours (hr ).
Our baseline parameter set, reported in Table 1, is estimated according to the various
data and videos reported in Osswald and Jung (2015a); Osswald et al. (2015). Conse-
quently, the parameters described here are linked to the associated experimental set-up
(transplantation of patient-derived primary brain tumour cells to the mouse brain) and
would require reevaluation in the context of, say, predicting glioma evolution in a
patient.

Concerning the kinetic parameters that drive TMT dynamics, video data in Osswald
et al. (2015) indicate that new tips emerge from a cell approximately once every
100min, leading to β = 0.6 /hr . Anastomosis is assumed to be relatively rare where,
if we assume that only one in 20 tips undergoes anastomosis, we take δ = 0.05β =
0.03 /hr . Further observations of videos (Osswald and Jung 2015a) indicate that
approximately only 20% of tips lead to mature microtubes, hence α = 0.2 /hr .

For the parameters that drive cellular (bulk and nuclei) kinetics, the videos from
Osswald and Jung (2015a); Osswald et al. (2015) suggest that the bulk doubles every
∼20 days, i.e. a net bulk growth rate of about 1 ×10−3 /hr . In our model, bulk growth
stems from two effects: the maturation of nuclei that have moved along a TMT, and
through direct mitosis of bulk cells. Noting that direct mitosis is rarely observed in
these experiments, we chose ρ = 6 × 10−4/hr , which corresponds to a doubling
time for bulk alone (without TMT) of about 150 days.

The transition of pre-bulk into bulk cells is taken to be approximately 5hr, i.e.
γ = 0.2 /hr . Parameters η and κ1, κ2 dictate the generation of new migrating nuclei
and their subsequent conversion into resting nuclei: for the former we assume η =
8 ×10−4 /(cell uni ts ·hr), and for the latterwe take κ1 = κ2 = 0.1 /(cell uni ts ·hr).
The term that removes migrating nuclei in the absence of microtubes is given the form
of a decaying exponential, κ3(M) = 0.1 exp(−M(t)); this stipulates the half life of
nuclei of 7hr when M = 0 and that negligible loss occurs for a substantial (i.e.
M � 0) microtube network.
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The carrying capacity K = 25, 000 is estimated from the z-stack videos of Osswald
and Jung (2015b). We find that a slice of thickness 25 μm and area of (100μm)2

contains about 5-8 cells. Hence, we set 25,000 per mm3. We note that under the
above described parameters, the simulations reported earlier under kinetic-only terms
indicated a maximum doubling time for bulk cells in the region of 10-20 days (see
Fig. 3).

Regarding parameters that govern movement dynamics, time lapse videos in Oss-
wald et al. (2015) of a single invading cell over 104min indicate a tip (substantially)
changing direction about 3 times. This leads to a tip turning rate of μp = 1.8 /hr .
Similarly, nucleus movement indicated a single change of direction in 3 days. Hence
we chose the turning rate of moving nuclei to be μn = 0.01 /hr . The videos also
allow calculations for the invasion speeds, which we estimate at sp = 0.0048 mm/hr
for the TMT tips. The nuclei invasion speed is reported in Osswald et al. (2015) as
sn = 0.0028 mm/hr .

We determine the proportionality constant ϕ in assumption (A.6) from data in
Osswald et al. (2015). This constant describes the average number of microtubes per
bulk cell; Figure 2 in Osswald et al. (2015) provides a histogram for the number of
protrusions per cell as the tumour progresses, and we take the mean at day 20 to obtain
ϕ = 1.6.

The parameters estimated here are summarized in Table 1. Note that in Fig. 3 and
Fig. 4 we provided simulations for the model under these parameters, respectively for
the kinetics-only system and of the full system for a one dimensional invasion wave
scenario.

4.2 Numerical test cases

Here we present the results of numerical simulations in two dimensions for the full
microtube model (1–5), along with the anisotropic diffusion approximations (25–
26) and (28). Regarding the numerical methods, the equations that involve transport
terms in (1–5) are integrated with the methods developed in Loy and Preziosi (2020);
Loy et al. (2021), which rely on a first order splitting of the kinetic equations. In
particular, for Eqs. (1) and (4) we perform a splitting of the transport term (integrated
explicitly with a van Leer finite difference scheme), while the reaction terms are
integrated explicitly in time; details of this method were presented in Loy and Preziosi
(2020); Loy et al. (2021). Equations (2), (3)–(5) are integrated explicitly in time.
The remaining equations are either of reaction-diffusion type or ODEs, and they are
integrated with an Explicit Euler time integration scheme. For the anisotropic and
isotropic diffusionmodels obtained following the parabolic scaling, we use an adapted
method from Thiessen and Hillen (2021). Simulations are performed on bounded
rectangular regions, where boundary conditions are imposed in a manner that leads to
zero flux at themacroscopic level. Specifically, at the kinetic level specular reflection is
imposedwhich, in the quasi-1D setting, forms a bounce-back.Note that the domain and
initial conditions in quasi-2D are set such that boundary conditions do not significantly
impact on dynamics, so that even if the chosen boundary conditions may not be
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so realistic to describe cellular behaviour, they have the important consequence of
ensuring conservation of mass within the computational domain.

Numerical simulations are performed under three scenarios, designed to explore
how quantitative and qualitative solution properties change under the various model
formulations. Unless stated otherwise, parameters are taken from the baseline set
presented in Table 1. Configurations are as follows:

Test 1 (invasion wave), exploring a one-dimensional invasion process within an
isotropic tissue;
Test 2 (anisotropic stripe), exploring a two-dimensional invasion process for a
tumour initialised within a stripe of highly aligned fibres;
Test 3 (treatment), exploring a simplified treatment scenario in which all but a
small fraction of bulk cells are removed and the possibility of cancer recurrence
is investigated.

4.2.1 Test 1: invasion waves

We consider a quasi-1D setting in which the domain is elongated along the x-axis and
solutions are constant in y direction. A tumour is initialised as bulk at the edge of a
portion of tissue of length 1mm.We note that the fibres are considered to be isotropic;
hence, model (22–23) is identical to (25–26), and model (28) is identical to (27). The
invasion process for the full model (1–5) has previously been shown in Fig. 4.

In Fig. 5we compare solutions at times T = 500, 1000, 20000 hours, for each of the
full model (1–5), the tips-bulk-transport model (15–16), the tips-bulk-isotropic model
(25–26), and the bulk-isotropic model (27). We observe that all models generate an
invasion front, in which the bulk steadily infiltrates non-diseased tissue, and appears
to be of travelling wave form (constant speed and profile). We notice immediately
that (under the chosen parameter values) the different models yield very different
invasion speeds. Table 2 lists these speeds, measured according to the location of
the 20% level set for the bulk. The invasion speed increases with each scaling or
simplification, resulting in more than an order of magnitude increase for the Fisher-
KPP limit version when compared to the full model. Notably, the measured invasion
speed from experiments (also reported in Table 2) lies between the simulated values
and is of the same order of magnitude.

This discrepancy in the speeds of the variousmodels is a direct result of the assump-
tions (A.1–.6) made during the model reduction process, demonstrating the potential
pitfall of making such assumptions without evaluation of their impact on the quantita-
tive dynamics. In particular, the very essence of a quasi-steady state assumption is to
compress the time required to arrive at a steady state. As an example, the implication of
assumptions (A.1,A.2) is to instantaneously place newbulk at the position of extending
microtube tips, thus ignoring the time required for nuclei to travel down microtubes
and transition into bulk: the tips-bulk-transport model, therefore, overestimates the
invasion speed of the full microtubes model. Moreover, derivation of the macroscopic
limit utilises the diffusive scaling (A.3) and that the reaction term is assumed to be
small (i.e. behaves as ε2 (A.4)). Hence, the evolution as prescribed by model (25–26)
is faster than not only (1–5) but also (15–16). On this we note (Stepien et al. 2018),
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bulk only model

tips-bulk transport model

tips-bulk diffusion model

full model

Fig. 5 Profiles of the solutions at times T = 500, 1000, 20, 000 hours, for each of the full model (1–5),
the tips-bulk-transport model (15–16), the tips-bulk-isotropic model (25–26), and the bulk-isotropic model
(27). For details of the numerical schemes we refer to the text, while for parameters we refer to Table 1

Table 2 Test 1, wave speed
comparison from Sect. 4.2.1 The
table lists the propagation wave
speeds of the bulk as computed
for the different models, the
theoretical speed from formula
(30) and the measured invasion
speed from video (Osswald and
Jung 2015a)

Model/Experiment Speed μm/hr

(1–5) 0.03

(15–16) 0.17

(25–26) 0.18

(27) 1.1

Theoretical speed (30) 1.1

Experimental speed 0.4

where the wave speeds for a go-or-grow glioma model (our model (25–26)) and the
PI-model (27) were compared analytically. It was found that the wave speeds differ
by a factor that is proportional to the transition rates of the two compartments of the
go-or-grow model.

Despite the disagreement at a quantitative level in the time evolution, there is a clear
qualitative correspondence between the solutions: for the bulk distribution we observe
that each of models predict growth of the bulk to the carrying capacity in monotonic
fashion.

4.2.2 Test 2: anisotropic scenario

We next explore a scenario that involves spatially-dependent anisotropy. Specifi-
cally, we consider a square domain Ω = [−1, 1] × [−1, 1] which contains a stripe
arrangement, i.e. a stripe of horizontal fibres within an isotropic tissue. Reflecting the
observation that microtubes tend to follow aligned structures (Osswald et al. 2015), we
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Fig. 6 Anisotropic scenario. Representative simulations of the full tumour-microtubes model (1–5) in (a)
and the tips-bulk-anisotropic model (22–23) in (b), under the stripe arrangement. The region of horizontally
aligned fibres is enclosed by the dashed lines shown in each panel. For eachmodel we show the distributions
of the variables at the three times indicated above each panel. Tips are shown in red, the TMT in blue, the
bulk in black and the migrating nuclei in violet. Note that for the full tumour-microtubes model, migrating
nuclei and pre-bulk have similar distributions and only the former are plotted. The parameters are drawn
from Table 1, where the anisotropy parameter was set to ν = 0.8. Length and time scales are in millimetres
and hours (color figure online)

impose a turning kernel (9) that relates tip orientation to the assumed tissue anisotropy.
Following the approach of previous studies (e.g. Painter and Hillen (2013); Swan et al.
(2018)),we set the functionq(v) according to a bimodal vonMises distribution, param-
eterized by a spatially-varying direction parameter, θq ∈ [0, π), and concentration
parameter, kq ∈ [0,∞)

q(v) = 1

4π I0(kq)

(
ekqv·u + e−kqv·u) ,

where u = (cos(θq), sin(θq))T , and I0 is the modified Bessel function of the first kind
of order zero.

We denote the region of horizontal fibres as ΩH = [−1, 1] × [−0.25, 0.25] and
set

(kq , θq) =
{

(50, 0) if (x, y) ∈ ΩH

(0, 0) otherwise.

Figures 6, 7 display the results of representative simulations under the stripe arrange-
ment. In Fig. 6a we show output for the full tumour-microtubes model (1–5). Notably,
we observe an anisotropic pattern of growth, whereby the growing tumour spreads
more rapidly along the stripe of aligned fibres. This is a direct consequence of the
orientation and movement of tips and microtubes along the fibres, therefore biasing
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Fig. 7 Anisotropic scenario. 2D simulations for the stripe anisotropic arrangement under different values
of ν = 0 (first column), ν = 0.5 (second column), and ν = 1 (third column). The region of horizontally
aligned fibres is enclosed by the dashed lines shown in each panel. The first row plots the distributions for
the tips (red) while the second row plots the distributions for the bulk (black) for model (22–23) at T=1000
hr (color figure online)

those directions for the seeding of new bulk. Profiles of the variables reflect those
seen in the one-dimensional simulations: tips and nuclei are found to be concentrated
into a pulse around the invasive front, giving rise to a combination of bulk and mature
microtubes in the rear.

Figure6b shows simulations of the reduced tips-bulk-anisotropic model (22–23)
for the same stripe arrangement. Qualitatively similar behaviour is observed, with
the tumour preferentially invading along the direction of anisotropy. However, in line
with earlier one-dimensional simulations, the invasion process is significantly faster.
This again highlights the potential danger of applying model reductions without direct
evaluation of their quantitative impact.

In Fig. 7 we use model (22–23) to investigate the impact of altering parameter ν,
a weighting parameter that controls the degree to which persistence or anisotropic
alignment influences tip orientation: ν = 0 describes an isotropic persistent random
walk, ν = 0.5 gives equal weights to the anisotropic and the persistent random walk,
while ν = 1 describes a fully anisotropic randomwalk. As expected, increasing ν from
0 to 0.5 to 1 results in greater anisotropic spread of the tumour driven by enhanced
invasion along the horizontal fibres.
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Fig. 8 Treatment scenario. The left two panels show growth of the pre treated tumour (showing the bulk)
over 1000hr, as determined by the tips-bulk-anisotropic model (22–23) with ν = 1/2. The region of
horizontally aligned fibres is enclosed by the dashed lines shown in each panel. The middle-right panel
shows the bulk distribution following treatment (see text for details) while the right-most panel plots the
bulk 1000hr post treatment

4.2.3 Test 3: treatment

In this section, we simulate a simple tumour treatment. First, we consider the solution
of the tips-bulk-anisotropic model (22–23) under the previous stripe arrangement
simulation (Fig. 6) at 1000hr. In Swanson et al. (2008) the hypothesised minimum
detection threshold for the visible part of the tumour is set to be about 0.16 of the
carrying capacity. In our simulated treatment, we define the treatment region to be all
numerical cells where the bulk density is larger or equal to 0.16K . To mimic effects
that could lead to the misalignment of the treatment region, such as through breathing
or imperfect patient positioning, we move the treatment region a bit off-centre in the
positive y direction by 0.05 mm. In the moved treatment region we set all bulk cells
to zero. In the rest of the domain we model a reduced treatment effect by randomly
killing bulk cells, drawn for each cell from a uniform distribution. This procedure
leaves a half-moon shaped area of partially treated tumour cells behind, as seen in the
third panel of Fig. 8.

Simulations indicate that recurrence will occur even if only a small amount of
tumour cells are missed during treatment. The bulk regrows from the treatment bound-
ary as quickly as the original tumour.

5 Discussion

The TMT-guided glioma invasion observed by Osswald et al. (2015) provides a poten-
tial paradigm shift in our understanding of glioma growth, in particular for the large
class of TMT-generating astrocytomas.Video observations (see Fig. 1) provide an intu-
itive explanation for the diffuse appearance of many gliomas. Rather than a distinct
tumour boundary, a complex invasion front is formed from the interaction between
TMT, moving nuclei and growing bulk cells. This invasion mechanism uncovers new
treatment targets, such as the TMT or a critical TMT growth factor Cx43 (Osswald
et al. 2015). Inspired by these observations, we have employed a mesoscopic transport
equation framework to model the phenomenon of TMT invasion. Our model assumes
that tumour growth is led through a network of thin TMT protrusions, facilitating
transportation of nuclei at the invasion front which then mature into bulk cancer cells.
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Notably, our model assumes that transport of glioma cells is exclusively through the
network-based shuttling: bulk glioma cells do not migrate independently. The produc-
tion terms in our model are based on a logistic term. This could, of course, be replaced
with other suitable growth laws, for example a Gompertz law.

The full model utilises kinetic transport equations within two of its equations.
The analysis of such systems is far from trivial (Hillen 2006) and fully formulating
this model required extensions to existing theory: the definition of integral operators
on appropriate function spaces, identifying null spaces of operators and applying
Fredholm alternatives for compact operators. While this theory is fundamental for the
understanding of the scalings, it distracts from the main message of this paper (the
hierarchical structure of existing and new glioma models) and the details are therefore
presented in Appendix A.

Starting from the mesoscopic system of equations, we were able to find a path-
way through well established macroscopic glioma models by applying a sequence
of scaling limits and simplifications. In particular, this ended at the well known
Fisher-KPP type model (27), commonly known as the proliferation-infiltration model
(PI-model) in glioma studies (Swanson et al. 2003, 2008; Rockne et al. 2010). Within
our framework, a PI model can be derived when we assume that nuclei dynamics
are in quasi-equilibrium (A.1), that the tips-TMT dynamics is in quasiequilibrium
(A.2), when we consider macroscopic time and space scales (A.3–A.4), if the spread
is isotropic (A.5), and when the tips are proportional to the bulk (A.6). Consequently, a
simple and tractable macroscopic model with a diffusive structure can be justified even
within the context of a more complex microscopic description in which any glioma
cell transport is strictly linked to the dynamics of its associated TMT network. Further,
this reduction to a Fisher-KPP model allows us to find an explicit form of the invasion
speed in terms of the parameters that govern the underlying glioma-TMT dynamics.

If anisotropy becomes important, for example through TMTorientation alongwhite
matter fibre tracks, then we relax (A.5) and can consider the anisotropic model (28) as
done in Swan et al. (2018); Jbabdi et al. (2005); Engwer et al. (2015). If we have a clear
separation of invading and growing sub-populations, we can use a go-or-grow type
formulation (22,23), i.e. a structure similar to previousmodels in Alfonso et al. (2017);
Stepien et al. (2018); Hatzikirou et al. (2012). Typical go-or-grow models feature two
different sub-populations which switch phenotype between proliferator and invader
states. For the go-or-grow version here, rather, it is the TMT tips that represent the
invading population.

Numerical simulations were used to compare the model types. Here we noticed that
the qualitative shapes of solutions to the full model, the tips-bulk-transport model, and
the tips-bulk-anisotropic model remain similar within the anisotropic diffusion tests.
Therefore, the quasi-equilibrium assumptions (A.1, A.2) and the diffusive scaling
(A.3, A.4) qualitatively preserve the shape of the solutions. However, the wave speed
increases significantly. This is a direct result of quasi-equilibrium assumptions, which
act to accelerate the underlying dynamics. Thus, ad hoc simplifications of complicated
models in the interest of deriving a simpler system should be considered with care.

Modelling inevitably depends on the available data. The assumptions and parame-
ters for our full model (1–5) is founded on detailed data obtained for a murine model
of glioma growth, but similar data is not available for glioma growth in humans. Clin-
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ically, measurements and data typically rely on macroscopic imaging, such as through
MRI or DTI imaging and PET imaging modalities and macroscopic models (such as
the PI model) are fitted directly to such datasets, without connecting to the under-
lying microscopic processes. Here we have added to a growing literature of studies
where glioma growth models are built upwards from the microscopic level, therefore
providing a connection between microscopic and macroscopic parameters.

Given the complexity of the biological process, various simplifications were neces-
sary during the modelling in order to derive a tractable system. Future investigations
will involve revisiting some of these simplifications and investigating the extent to
which they influence the dynamical behaviour
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Structure of the turning operators

The model (1–5) involves kinetic transport terms in the equations of P and N . The
analysis of such transport equations is involved, and it requires a carefully laid out
functional analytical approach. In this section we provide these details. Comprehen-
sive descriptions of these procedures can be found in Othmer andHillen (2000); Hillen
(2006).

The key component of the transport process is the turning operator L in (1). In
the following we define L, consider its nullspace, find the corresponding Maxwellian
Ψ (v), and derive a pseudo-inverse of L.
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For this let us consider the transport part of the tip Eq. (1)

Pt + spv · ∇P︸ ︷︷ ︸
movement

= LP︸︷︷︸
reorientation

(31)

where L denotes the turning operator. The turning operator acts on the v-dependence
of P , hence we consider L : L2(V ) → L2(V ), and we focus on the v-dependence in
this subsection. Then for P ∈ L2(V ) we have

LP(v) = −μp P(v) + μp

∫
V
T (v, v′)P(v′)dv′, (32)

whereμp is the turning rate and the turning kernel is T (v, v′). We note that microtubes
follow the direction of nerve fibres, but also keep relatively straight and do not bend
too much. To model both effects, we use a combination of a trail following term L1
and a persistent random walk L2 such that L is a convex combination

L = νL1 + (1 − ν)L2

for some 0 ≤ ν ≤ 1. The directed component L1 has the kernel T1(v, v′) = q(v),
where q(v) is a probability distribution representing the distribution of nerve fibre
directions. Note that in the full model q(x, v) will depend on space. Here we focus on
the v-dependence only. Then

L1P = μp(P̄q − P),

where P̄(t, x) = ∫
V P(t, x, v)dv. A persistent random walk can be modelled using a

cosine bias of the previous direction (Othmer and Hillen 2000) as

T2(v, v′) = 1

ω

(
1 + a

v · v′

|v||v′|
)

,

for a persistence parameter 0 ≤ a ≤ 1 and ω = |V |. Then

L2P = μp

(
P̄

ω
+ a v

ω|v| · EP − P

)
, with EP =

∫
V

v

|v| P(v)dv.

Through this construction we can also identify a full turning kernel as the convex
combination of T1 and T2.

T (v, v′) = νT1(v, v′) + (1 − ν)T2(v, v′) = νq(v) + 1 − ν

ω

(
1 + a

v · v′

|v||v′|
)

,

0 ≤ a ≤ 1
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where ν ∈ [0, 1]. Let us suppose that q is bidirected, so that

Eq =
∫
V

v

|v|q(v)dv = 0, as well as
∫
V

vq(v)dv = 0. (33)

If we consider scaling limits, then the null space of the operator L becomes
important. Each of the operators L1 and L2 have been studied in isolation many
times (Othmer and Hillen (2000); Hillen (2006)). We have that kerL1 = 〈q〉, while
kerL2 = 〈1〉. As we show next, the kernel of L is a linear combination of these:

Lemma 1 We consider L2(V ) with the weighted inner product

( f , g) =
∫
V

f (v)g(v)
dv

Ψ (v)
, with Ψ (v) = νq(v) + 1 − ν

ω
. (34)

We assume

(1 − ν)a

ω
cn �= 1 where cn = ω

n

{
1 if V = sSn−1

(s2 − s1) if V = [s2, s1] × S
n−1 . (35)

Then

kerL = 〈Ψ (v)〉.

Note that in the above Lemmawe ignored the possible x dependence in q. If q depends
on x then Ψ does as well. The function Ψ (v) is a probability density function as

∫
V

(
νq(v) + (1 − ν)

ω

)
dv = 1

is called the equilibrium distribution with LΨ = 0.

Proof We first show thatΨ ∈ kerL. Doing so requires showing thatLΨ = 0. Written
in explicit terms, this is

LΨ = νL1Ψ + (1 − ν)L2Ψ

= νL1νq︸ ︷︷ ︸
=0

+νL1

(1 − ν

ω

)
+ (1 − ν)L2

(
νq

)
+ (1 − ν)L2

(
1 − ν

ω

)
︸ ︷︷ ︸

=0

,
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where the two 0-terms follow fromdirect calculation. Themixed terms demand special
attention

νL1

(
(1 − ν)

1

ω

)
+ (1 − ν)L2

(
νq

)

= μp

[
νq(v)

∫
V

1 − ν

ω
dv′ + (1 − ν)

∫
V

(
1 + a

v · v′

|v||v′|
)

1

ω
νq(v′) dv′ − ν

1 − ν

ω
− (1 − ν)νq(v)

]

= μp

⎡
⎢⎢⎢⎢⎣ν(1 − ν)q(v) + (1 − ν)ν

ω

∫
V
q(v′) dv′

︸ ︷︷ ︸
=1

+ (1 − ν)νa

ω

v

|v| ·
∫
V

v′

|v′|q(v′) dv′

︸ ︷︷ ︸
=0,by(33)

−ν
1 − ν

ω
− (1 − ν)νq(v)

]

= 0.

Let us now prove that kerL ⊂ 〈Ψ 〉. Consider ϕ ∈ kerL and, for the sake of argument,
suppose that ϕ does not belong to 〈Ψ 〉. Then, ϕ has a component in 〈Ψ 〉⊥, which we
again call ϕ for simplicity. Then

0 = Lϕ

= −μpϕ + μp

∫
V

(
νq + 1 − ν

ω

(
1 + a

v · v′
|v||v′|

))
ϕ(v′)dv′

= −μpϕ + μp

(
νq + 1 − ν

ω

) ∫
V

ϕ(v′) Ψ (v′) dv′
Ψ (v′)︸ ︷︷ ︸

= 0

+μp

∫
V

(1 − ν)a

ω

v · v′
|v||v′|ϕ(v′)dv′

= −μpϕ + μp
(1 − ν)a

ω

v

|v| · Eϕ,

where

Eϕ =
∫
V

v′

|v′|ϕ(v′)dv′. (36)

This implies that ϕ has a specific form

ϕ(v) = (1 − ν)a

ω

v

|v| · Eϕ. (37)

This expression is indeed perpendicular to Ψ (v):

(ϕ, Ψ ) =
∫
V

(1 − ν)a

ω

(
v

|v| · Eϕ

)
Ψ (v)

dv

Ψ (v)
= (1 − ν)a

ω

∫
V

v

|v|dv

︸ ︷︷ ︸
=0

·Eϕ.
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We substitute (37) into (36) to obtain

Eϕ = (1 − ν)a

ω

∫
V

vvT

|v|2 dv · Eϕ, (38)

which is a condition on Eϕ . To further analyze this condition, we need to compute the
second velocity moment

∫
V

vvT

|v|2 dv.

Such calculations have been performed in Hillen (2005) and we summarize the impor-
tant steps here.We distinguish two cases. In the first case we assume a constant particle
speed, then the set of velocities becomes V = sSn−1. Using the substitution v = sθ
with unit vector θ , we find

∫
V

vvT

|v|2 dv = sn−1
∫
Sn−1

θθT dθ = sn−1 |Sn−1|
n

I = ω

n
I,

where I is the identity matrix and ω = |V |.
In the second case we consider V = [s1, s2] × S

n−1, where particles can have
speeds in the interval [s1, s2]. Then

∫
V

vvT

|v|2 dv =
∫ s2

s1

∫
sSn−1

vvT

|v|2 dvds = (sn2 − sn1 )

n

|Sn−1|
n

I = ω

n
I,

where again ω = |V |. Then condition (38) becomes

(
1 − (1 − ν)a

n

)
Eϕ = 0.

Since we have that (1−v)a
n �= 1 and this implies that Eϕ = 0. Then, from (37), we also

have ϕ = 0 and consequently ϕ ∈ 〈Ψ 〉. ��
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