270 research outputs found

    Chronic transplant dysfunction and transplant arteriosclerosis:New insights into underlying mechanisms

    Get PDF
    Although effective in the short-term, clinical solid-organ transplantation has not achieved its goals as a long-term treatment for patients with end-stage organ failure. Development of so-called chronic transplant dysfunction (CTD) is now recognised as the predominant cause of allograft loss long-term (after the first post-operative year) following transplantation. CTD has the remarkable histological feature that the luminal areas of intragraft arteries become obliterated, predominantly with vascular smooth muscle cells intermingled with some inflammatory cells. The development of this transplant vasculopathy, referred to as transplant arteriosclerosis (TA), is a multifactorial process and many risk factors have been identified. However, the precise pathogenetic mechanisms leading to TA are largely unknown and, as a result, current prevention and treatment protocols are inadequate. This review discusses the risk factors for TA and current views on the pathogenetic mechanisms leading to this vasculopathy. We argue here that host-derived cells contribute to the development of these vascular lesions, and propose that TA results from a normal vascular repair process that proceeds beyond the needs of functional repair. Guided by the proposed sequence of events, we finally discuss possible directions for future intervention strategies to prevent TA after solid-organ transplantation.</p

    Circulating smooth muscle cell plasticity in the development of transplant arteriosclerosis

    Get PDF
    To date, chronic transplant dysfunction (CTD) is recognized as the major cause of long-term transplant loss (&gt;1 year) after transplantation. CTD presents histologically with obliterated intragraft arteries as a result of intimal hyperplasia referred to as transplant arteriosclerosis (TA). Neointimal lesions predominantly consist of vascular smooth muscle cells (VSMCs) intermingled with some inflammatory cells. The pathogenesis of TA is believed to be multifactorial, and many risk factors have been identified. Because the precise pathogenetic mechanisms underlying TA are still largely unknown, adequate prevention and treatment protocols are not available. In this review, we discus the origin (donor vs recipient, bone marrow vs non-bone marrow) of neointimal endothelial cells (ECs) and VSMCs in TA lesions, which were formerly believed to be solely graft-derived. On the basis of the data obtained in both clinical and experimental transplantation, it appears that the process leading to TA is heterogeneous and that neointimal ECs and VSMCs can be recruited from different sources, possibly depending on the severity of vascular damage. These data suggest a significant role of host-derived circulating EC-VSMC progenitor cells, which may be partly bone marrow-derived. These circulating progenitor cells are potential targets for therapeutic intervention to ameliorate TA development or occlusive vascular disease in general.</p

    Blood-borne origin of neointimal smooth muscle cells in transplant arteriosclerosis

    Get PDF
    Transplant arteriosclerosis (TA) is a major complication after solid organ transplantation. TA is characterized by persistent perivascular inflammation and concentric intimal thickening consisting of α-actin-positive vascular smooth muscle (VSM) cells. The current view on TA is that donor-derived medial VSM cells of affected arteries migrate and proliferate into the subendothelial space, resulting in luminal narrowing. Following this concept, the VSM cells present in the arteriosclerotic lesions are of donor origin. In this study, the authors analyzed the origin (donor vs recipient) of endothelium (EC) and neointimal α-actin-positive VSM cells in 2 different experimental transplant models. Aortic and cardiac allografting was performed in the PVG (RT-1c) to AO (RT-1u) rat strain combination. Aorta recipients were not immunosuppressed, whereas cardiac allograft recipients were intrathymically immune modulated to prevent acute rejection. Transplants were performed from female donor to male recipient rats. The α-actin-positive VSM cells present in arteriosclerotic lesions, in aortic as well as cardiac allografts, were of recipient, rather than donor, origin. Following aortic allografts, the ECs are completely replaced by host-derived ECs, whereas in cardiac allografts the ECs are still of donor origin.</p

    The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes

    Get PDF
    Cardiovascular disease is the major cause of morbidity and mortality associated with diabetes. There is increasing evidence that advanced glycation endproducts (AGEs) play a pivotal role in atherosclerosis, in particular in diabetes. AGE accumulation is a measure of cumulative metabolic and oxidative stress, and may so represent the "metabolic memory". Furthermore, increased AGE accumulation is closely related to the development of cardiovascular complications in diabetes. This review article will focus on the clinical relevance of measuring AGE accumulation in diabetic patients by focusing on AGE formation, AGEs as predictors of long-term complications, and interventions against AGEs

    Role of Peritoneal Macrophages in Cytomegalovirus-induced Acceleration of Autoimmune Diabetes in BB-rats

    Get PDF
    Background: As one of the natural perturbants, infection with cytomegalovirus (CMV) is believed to play a role in the development of Type I diabetes. Using the DP-BB rat model for autoimmune diabetes, we here report about possible mechanisms responsible for R(at)CMV-induced accelerated onset of diabetes

    Cytomegalovirus Infection Modulates Cellular Immunity in an Experimental Model for Autoimmune Diabetes

    Get PDF
    Background: Viral infections are thought to play a role in the development of autoimmune diseases like type 1 diabetes. In this study we investigated the effect of Rat Cytomegalovirus (RCMV) infection on cellular immunity in a well-defined animal model for diabetes, the Biobreeding (BB) rat

    Tissue expression and source of circulating αKlotho

    Get PDF
    αKlotho (Klotho), a type I transmembrane protein and a coreceptor for Fibroblast Growth Factor-23, was initially thought to be expressed only in a limited number of tissues, most importantly the kidney, parathyroid gland and choroid plexus. Emerging data may suggest a more ubiquitous Klotho expression pattern which has prompted reevaluation of the restricted Klotho paradigm. Herein we systematically review the evidence for Klotho expression in various tissues and cell types in humans and other mammals, and discuss potential reasons behind existing conflicting data. Based on current literature and tissue expression atlases, we propose a classification of tissues into high, intermediate and low/absent Klotho expression. The functional relevance of Klotho in organs with low expression levels remain uncertain and there is currently limited data on a role for membrane-bound Klotho outside the kidney. Finally, we review the evidence for the tissue source of soluble Klotho, and conclude that the kidney is likely to be the principal source of circulating Klotho in physiolog

    Calciprotein Particles Balancing Mineral Homeostasis and Vascular Pathology:Balancing Mineral Homeostasis and Vascular Pathology

    Get PDF
    Hypercalcemia and hyperphosphatemia associate with an elevated risk of cardiovascular events, yet the pathophysiological basis of this association is unclear. Disturbed mineral homeostasis and the associated hypercalcemia and hyperphosphatemia may result in the formation of circulating calciprotein particles (CPPs) that aggregate the excessive calcium and phosphate ions. If not counteracted, the initially formed harmless amorphous spherical complexes (primary CPPs) may mature into damaging crystalline complexes (secondary CPPs). Secondary CPPs are internalized by vascular cells, causing a massive influx of calcium ions into the cytosol, leading to a proinflammatory response, cellular dysfunction, and cell death. Although the pathophysiological effects induced by CPPs in vascular cells receive increasing attention, a complete picture of how these particles contribute to the development of atherosclerosis and vascular calcification remains elusive. We here discuss existing knowledge on CPP formation and function in atherosclerosis and vascular calcification, techniques for investigating CPPs, and models currently applied to assess CPP-induced cardiovascular pathogenesis. Lastly, we evaluate the potential diagnostic value of serum CPP measurements and the therapeutic potential of anti-CPP therapies currently under development

    A roadmap for the genetic analysis of renal aging

    Get PDF
    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression

    Prevention of Triglyceridemia by (Non-)Anticoagulant Heparin(oids) Does Not Preclude Transplant Vasculopathy and Glomerulosclerosis

    Get PDF
    Background: In renal transplantation, chronic transplant dysfunction (CTD) is associated with increased PCSK9 and dyslipidemia. PCSK9 is an enzyme that increases plasma cholesterol levels by downregulating LDLR expression. We recently showed increased PCSK9–syndecan-1 interaction in conditions of proteinuria and renal function loss. Treatment with heparin(oids) might be a therapeutic option to improve dyslipidemia and CTD. We investigated the effects of (non-)anticoagulant heparin(oids) on serum lipids, syndecan-1 and PCSK9 levels, and CTD development. Methods: Kidney allotransplantation was performed from female Dark Agouti to male Wistar Furth recipients. Transplanted rats received daily subcutaneous injections of saline, unfractionated heparin, and RO-heparin or NAc-heparin (2 mg heparin(oid)/kg BW) until sacrifice after 9 weeks of treatment. Results: Saline-treated recipients developed hypertension, proteinuria, and loss of creatinine clearance (all p < 0.05 compared to baseline), along with glomerulosclerosis and arterial neo-intima formation. Saline-treated recipients showed significant increase in plasma triglycerides (p < 0.05), borderline increase in non-HDLc/HDLc (p = 0.051), and ∌10-fold increase in serum syndecan-1 (p < 0.05), without significant increase in serum PCSK9 at 8 weeks compared to baseline. Heparin and non-anticoagulant RO-heparin administration in transplanted rats completely prevented an increase in triglycerides compared to saline-treated recipients at 8 weeks (both p < 0.05). Heparin(oids) treatment did not influence serum total cholesterol (TC), plasma syndecan-1 and PCSK9 levels, creatinine clearance, proteinuria, glomerulosclerosis, and arterial neo-intima formation, 8 weeks after transplantation. Combining all groups, increased syndecan-1 shedding was associated with TC (r = 0.5; p = 0.03) and glomerulosclerosis (r = 0.53; p = 0.021), whereas the non-HDLc/HDLc ratio was associated with the neo-intimal score in the transplanted kidneys (r = 0.65; p < 0.001). Conclusion: Prevention of triglyceridemia by (non-)anticoagulant heparin(oids) neither influenced PCSK9/syndecan-1 nor precluded CTD, which however did associate with the shedding of lipoprotein clearance receptor syndecan-1 and the unfavorable cholesterol profile
    • 

    corecore