24 research outputs found

    Within-Network Connectivity in the Salience Network After Attention Bias Modification Training in Residual Depression: Report From a Preregistered Clinical Trial

    Get PDF
    Alterations in resting state networks (RSNs) are associated with emotional- and attentional control difficulties in depressed individuals. Attentional bias modification (ABM) training may lead to more adaptive emotional processing in depression, but little is known about the neural underpinnings associated with ABM. In the current study a sample of 134 previously depressed individuals were randomized into 14 days of computerized ABM- or a closely matched placebo training regime followed by a resting state magnetic resonance imaging (MRI) scan. Using independent component analysis (ICA) we examined within-network connectivity in three major RSN’s, the default mode network (DMN), the salience network (SN) and the central executive network (CEN) after 2 weeks of ABM training. We found a significant difference between the training groups within the SN, but no difference within the DMN or CEN. Moreover, a significant symptom improvement was observed in the ABM group after training.Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02931487

    Within-Network Connectivity in the Salience Network After Attention Bias Modification Training in Residual Depression: Report From a Preregistered Clinical Trial

    No full text
    Alterations in resting state networks (RSNs) are associated with emotional- and attentional control difficulties in depressed individuals. Attentional bias modification (ABM) training may lead to more adaptive emotional processing in depression, but little is known about the neural underpinnings associated with ABM. In the current study a sample of 134 previously depressed individuals were randomized into 14 days of computerized ABM- or a closely matched placebo training regime followed by a resting state magnetic resonance imaging (MRI) scan. Using independent component analysis (ICA) we examined within-network connectivity in three major RSN’s, the default mode network (DMN), the salience network (SN) and the central executive network (CEN) after 2 weeks of ABM training. We found a significant difference between the training groups within the SN, but no difference within the DMN or CEN. Moreover, a significant symptom improvement was observed in the ABM group after training

    Attentional bias modification is associated with fMRI response toward negative stimuli in individuals with residual depression: a randomized controlled trial

    No full text
    Background: Attentional bias modification (ABM) may lead to more adaptive emotion perception and emotion regulation. Understanding the neural basis of these effects may lead to greater precision for the development of future treatments. Task-related functional MRI (fMRI) after ABM training has not been investigated in depression so far. The main aim of this randomized controlled trial was to explore differences in brain activity after ABM training, in response to emotional stimuli. Methods: A total of 134 people with previous depression, who had been treated for depression and had various degrees of residual symptoms, were randomized to 14 days of active ABM or a closely matched placebo training, followed by an fMRI emotion regulation task. The training procedure was a classical dot–probe task with emotional face stimuli. In the active ABM condition, the probes replaced the more positively valenced face of a given pair. As participants implicitly learned to predict the probe location, this would be likely to induce a more positive attentional bias. The placebo condition was identical, except for the contingency of the probe, which appeared equally behind positive and negative stimuli. We compared depression symptoms and subjective ratings of perceived negativity during fMRI between the training groups. We explored brain activation in predefined regions of interest and across the whole brain. We explored activation in areas associated with changes in attentional bias and degree of depression. Results: Compared with the placebo group, the ABM group showed reduced activation in the amygdala and the anterior cingulate cortex when passively viewing negative images. We found no group differences in predefined regions of interest associated with emotion regulation strategies. Response in the temporal cortices was associated with the degree of change in attentional bias and the degree of depressive symptoms in ABM versus placebo. Limitations: These findings should be replicated in other samples of patients with depression, and in studies using fMRI designs that allow analyses of within-group variability from baseline to follow-up. Conclusion: Attentional bias modification training has an effect on brain function in the circuitry associated with emotional appraisal and the generation of affective states. Clinicaltrials.gov identifier: NCT02931487

    Over-the-counter analgesics use is associated with pain and psychological distress among adolescents: a mixed effects approach in cross-sectional survey data from Norway

    No full text
    Background Over-the-counter analgesics (OTCA) such as Paracetamol and Ibuprofen are frequently used by adolescents, and the route of administration and access at home allows unsupervised use. Psychological distress and pain occur simultaneously and are more common among females than among males. There is a dynamic interplay between on-label pain indications and psychological distress, and frequent OTCA use or misuse can exacerbate symptoms. No studies have to date provided an overview of frequent OTCA use in a larger population-based study. The current study used survey data to explore associations between and the relative predictive value of on-label pain indication and measures of psychological distress, together with sex differences for weekly OTCA use. Methods This study included 349,528 adolescents aged 13–19. The data was collected annually between January 2014 and December 2018 as part of the Norwegian Young Data survey. Performance analysis was conducted to explore the relative roles and associations between on-label pain indication and psychological distress in weekly OTCA use. A mixed-effects logistic regression model was used to explore the unique contributions from four domains of on-label pain indication and psychological distress as measured by a combined measure of anxiety and depression (HSCL-10) and peer-bullying involvement as victims or bullies. Results Thirty percent of females and 13 % of males use OTCA weekly. Headache is the strongest on-label pain predictor of weekly OTCA use, followed by abdominal pain. Depression and anxiety are the strongest psychological predictor of weekly OTCA use, and higher symptom levels and being female increase the strength of this association. Anxiety and depression also predict weekly OTCA use after controlling for physiological pain. Conclusions Sex, pain and anxiety and depression are inter-correlated and strong predictors of frequent OTCA use. Frequent OTCA use in the context of psychological distress may be a form of self-medication that can exacerbate symptoms and decrease psychosocial function. Longitudinal studies that explore causal trajectories between frequent on-label OTCA use and psychological distress are required. OTCA use among adolescents, and particularly among females, with anxiety and depression should be administered with caution and closely monitored

    Right temporal cortical hypertrophy in resilience to trauma: an MRI study

    No full text
    Background: In studies employing physiological measures such as magnetic resonance imaging (MRI), it is often hard to distinguish what constitutes risk-resilience factors to posttraumatic stress disorder (PTSD) following trauma exposure and what the effects of trauma exposure and PTSD are. Objective: We aimed to investigate whether there were observable morphological differences in cortical and sub-cortical regions of the brain, 7–8 years after a single potentially traumatic event. Methods: Twenty-four participants, who all directly experienced the 2004 Indian Ocean Tsunami, and 25 controls, underwent structural MRI using a 3T scanner. We generated cortical thickness maps and parcellated sub-cortical volumes for analysis. Results: We observed greater cortical thickness for the trauma-exposed participants relative to controls, in a right lateralized temporal lobe region including anterior fusiform gyrus, and superior, middle, and inferior temporal gyrus. Conclusions: We observed greater thickness in the right temporal lobe which might indicate that the region could be implicated in resilience to the long-term effects of a traumatic event. We hypothesize this is due to altered emotional semantic memory processing. However, several methodological and confounding issues warrant caution in interpretation of the results

    Data-driven clustering reveals a link between symptoms and functional brain connectivity in depression

    No full text
    Background: Depression is a complex disorder with large interindividual variability in symptom profiles that often occur alongside symptoms of other psychiatric domains, such as anxiety. A dimensional and symptom-based approach may help refine the characterization of depressive and anxiety disorders and thus aid in establishing robust biomarkers. We use resting-state functional magnetic resonance imaging to assess the brain functional connectivity correlates of a symptom-based clustering of individuals. Methods: We assessed symptoms using the Beck Depression and Beck Anxiety Inventories in individuals with or without a history of depression (N = 1084) and high-dimensional data clustering to form subgroups based on symptom profiles. We compared dynamic and static functional connectivity between subgroups in a subset of the total sample (n = 252). Results: We identified five subgroups with distinct symptom profiles, which cut across diagnostic boundaries with different total severity, symptom patterns, and centrality. For instance, inability to relax, fear of the worst, and feelings of guilt were among the most severe symptoms in subgroups 1, 2, and 3, respectively. The distribution of individuals was 32%, 25%, 22%, 10%, and 11% in subgroups 1 to 5, respectively. These subgroups showed evidence of differential static brain-connectivity patterns, in particular comprising a frontotemporal network. In contrast, we found no significant associations with clinical sum scores, dynamic functional connectivity, or global connectivity. Conclusions: Adding to the pursuit of individual-based treatment, subtyping based on a dimensional conceptualization and unique constellations of anxiety and depression symptoms is supported by distinct patterns of static functional connectivity in the brain

    Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis

    No full text
    Previous structural and functional neuroimaging studies have implicated distributed brain regions and networks in depression. However, there are no robust imaging biomarkers that are specific to depression, which may be due to clinical heterogeneity and neurobiological complexity. A dimensional approach and fusion of imaging modalities may yield a more coherent view of the neuronal correlates of depression. We used linked independent component analysis to fuse cortical macrostructure (thickness, area, gray matter density), white matter diffusion properties and resting‐state functional magnetic resonance imaging default mode network amplitude in patients with a history of depression (n = 170) and controls (n = 71). We used univariate and machine learning approaches to assess the relationship between age, sex, case–control status, and symptom loads for depression and anxiety with the resulting brain components. Univariate analyses revealed strong associations between age and sex with mainly global but also regional specific brain components, with varying degrees of multimodal involvement. In contrast, there were no significant associations with case–control status, nor symptom loads for depression and anxiety with the brain components, nor any interaction effects with age and sex. Machine learning revealed low model performance for classifying patients from controls and predicting symptom loads for depression and anxiety, but high age prediction accuracy. Multimodal fusion of brain imaging data alone may not be sufficient for dissecting the clinical and neurobiological heterogeneity of depression. Precise clinical stratification and methods for brain phenotyping at the individual level based on large training samples may be needed to parse the neuroanatomy of depression

    Exploring the Links between Specific Depression Symptoms and Brain Structure: A Network Study

    No full text
    Understanding the neural substrates of specific symptoms may provide important information about mechanisms underlying depression vulnerability. A growing body of research under the umbrella term ‘network approach’ has recently received considerable attention[5]; the approach understands and aims to model mental disorders as systems of causally interacting symptoms. So far, network studies have been based on symptoms and environmental factors, ignoring relevant neurobiological factors[6]. Here, we address this knowledge gap by modelling a joint network of depression-related brain structures and individual depression symptoms, using 21 symptoms and five regional brain measures. The sample is a mixed group of individuals that previously have been treated for one or more major depressive episodes (MDE) and never depressed individuals, with the goal to model a continuum of depression severity. Hippocampus was negatively associated with changes in appetite and sadness, and positively associated with loss of interest and irritability. Insula was negatively associated with loss of interest in sex and sadness. Cingulate had a negative association with sadness, and positive associations with crying and worthlessness. Fusiform gyrus had positive associations with crying and irritability

    Brain volumes and regional cortical thickness in young females with anorexia nervosa

    Get PDF
    Background Anorexia nervosa (AN) is a severe mental illness, with an unknown etiology. Magnetic resonance imaging studies show reduced brain volumes and cortical thickness in patients compared to healthy controls. However, findings are inconsistent, especially concerning the anatomical location and extent of the differences. The purpose of this study was to estimate and compare brain volumes and regional cortical thickness in young females with AN and healthy controls. Methods Magnetic resonance imaging data was acquired from young females with anorexia nervosa (n = 23) and healthy controls (n = 28). Two different scanner sites were used. BMI varied from 13.5 to 20.7 within the patient group, and 11 patients had a BMI > 17.5. FreeSurfer was used to estimate brain volumes and regional cortical thickness. Results There were no differences between groups in total cerebral cortex volume, white matter volume, or lateral ventricle volume. There were also no volume differences in subcortical grey matter structures. However the results showed reduced cortical thickness bilaterally in the superior parietal gyrus, and in the right inferior parietal and superior frontal gyri. Conclusions The functional significance of the findings is undetermined as the majority of the included patients was already partially weight-restored. We discuss whether these regions could be related to predisposing factors of the illness, or whether they are regions that are more vulnerable to starvation, malnutrition or associated processes in AN

    In Vivo Amygdala Nuclei Volumes in Schizophrenia and Bipolar Disorders

    No full text
    Abstract Abnormalities in amygdala volume are well-established in schizophrenia and commonly reported in bipolar disorders. However, the specificity of volumetric differences in individual amygdala nuclei is largely unknown. Patients with schizophrenia disorders (SCZ, N = 452, mean age 30.7 ¹ 9.2 [SD] years, females 44.4%), bipolar disorders (BP, N = 316, 33.7 ¹ 11.4, 58.5%), and healthy controls (N = 753, 34.1 ¹ 9.1, 40.9%) underwent T1-weighted magnetic resonance imaging. Total amygdala, nuclei, and intracranial volume (ICV) were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple linear regression models, adjusting for age, age2, ICV, and sex, were fitted to examine diagnostic group and subgroup differences in volume, respectively. Bilateral total amygdala and all nuclei volumes, except the medial and central nuclei, were significantly smaller in patients relative to controls. The largest effect sizes were found for the basal nucleus, accessory basal nucleus, and cortico-amygdaloid transition area (partial Ρ2 > 0.02). The diagnostic subgroup analysis showed that reductions in amygdala nuclei volume were most widespread in schizophrenia, with the lateral, cortical, paralaminar, and central nuclei being solely reduced in this disorder. The right accessory basal nucleus was marginally smaller in SCZ relative to BP (t = 2.32, P = .05). Our study is the first to demonstrate distinct patterns of amygdala nuclei volume reductions in a well-powered sample of patients with schizophrenia and bipolar disorders. Volume differences in the basolateral complex (lateral, basal, and accessory basal nuclei), an integral part of the threat processing circuitry, were most prominent in schizophrenia
    corecore