6 research outputs found

    Binding of DC-SIGN to the Hemagglutinin of Influenza A Viruses Supports Virus Replication in DC-SIGN Expressing Cells

    Get PDF
    Dendritic cells express lectins receptors, like DC-SIGN, which allow these cells to sense glycans that are present on various bacterial and viral pathogens. Interaction of DC-SIGN with carbohydrate moieties induces maturation of dendritic cells and promotes endocytosis of pathogens which is an important property of these professional antigen presenting cells. Uptake of pathogens by dendritic cells may lead to cross-presentation of antigens or infection of these cells, which ultimately results in activation of virus-specific T cells in draining lymph nodes. Little is known about the interaction of DC-SIGN with influenza A viruses. Here we show that a virus with a non-functional receptor binding site in its hemagglutinin, can replicate in cells expressing DC-SIGN. Also in the absence of sialic acids, which is the receptor for influenza A viruses, these viruses replicate in DC-SIGN expressing cells including human dendritic cells. Furthermore, the efficiency of DC-SIGN mediated infection is dependent on the extent of glycosylation of the viral hemagglutinin

    Enhanced antiviral activity of human surfactant protein d by site-specific engineering of the carbohydrate recognition domain

    Get PDF
    Innate immunity is critical in the early containment of influenza A virus (IAV) infection and surfactant protein D (SP-D) plays a crucial role in innate defense against IAV in the lungs. Multivalent lectin-mediated interactions of SP-D with IAVs result in viral aggregation, reduced epithelial infection, and enhanced IAV clearance by phagocytic cells. Previous studies showed that porcine SP-D (pSP-D) exhibits distinct antiviral activity against IAV as compared to human SP-D (hSP-D), mainly due to key residues in the lectin domain of pSP-D that contribute to its profound neutralizing activity. These observations provided the basis for the design of a full-length recombinant mutant form of hSP-D, designated as “improved SP-D” (iSP-D). Inspired by pSP-D, the lectin domain of iSP-D has 5 amino acids replaced (Asp324Asn, Asp330Asn, Val251Glu, Lys287Gln, Glu289Lys) and 3 amino acids inserted (326Gly-Ser-Ser). Characterization of iSP-D revealed no major differences in protein assembly and saccharide binding selectivity as compared to hSP-D. However, hemagglutination inhibition measurements showed that iSP-D expressed strongly enhanced activity compared to hSP-D against 31 different IAV strains tested, including (pandemic) IAVs that were resistant for neutralization by hSP-D. Furthermore, iSP-D showed increased viral aggregation and enhanced protection of MDCK cells against infection by IAV. Importantly, prophylactic or therapeutic application of iSP-D decreased weight loss and reduced viral lung titers in a murine model of IAV infection using a clinical isolate of H1N1pdm09 virus. These studies demonstrate the potential of iSP-D as a novel human-based antiviral inhalation drug that may provide immediate protection against or recovery from respiratory (pandemic) IAV infections in humans

    Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines

    Get PDF
    There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various subtypes of influenza A viruses. This implies that these CD8+T lymphocytes may contribute to protective heterosubtypic immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-specific CD8+T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim at the induction of cross-reactive virus-specific T-cell responses. Copyrigh

    Human influenza a virus-specific CD8<sup>+</sup> T-cell response is long-lived

    No full text
    Animal and human studies have demonstrated the importance of influenza A virus (IAV)-specific CD8+ cytotoxic T lymphocytes (CTLs) in heterosubtypic cross-protective immunity. Using peripheral blood mononuclear cells obtained intermittently from healthy HLA-typed blood donors between 1999 and 2012, we were able to demonstrate that IAV-specific CTLs are long-lived. Intercurrent IAV infections transiently increase the frequency of functionally distinct subsets of IAV-specific CTLs, in particular effector and effector memory T cells

    Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses

    No full text
    Virus-specific CD8+ T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity of human CD8+ T-lymphocytes, induced by infection with seasonal A (H1N1) or A (H3N2) influenza virus, with 2009 pandemic influenza A (H1N1) virus [A(H1N1)pdm09] and swine-origin triple reassortant A (H3N2) [A(H3N2)v] viruses that are currently causing an increasing number of human cases in the USA. It was demonstrated that CD8+ T-cells induced after seasonal IAV infections exerted lytic activity and produced gamma interferon upon in vitro restimulation with A(H1N1)pdm09 and A(H3N2)v influenza A viruses. Furthermore, CD8+ T-cells directed to A(H1N1)pdm09 virus displayed a high degree of cross-reactivity with A(H3N2)v viruses. It was concluded that cross-reacting T-cells had the potential to afford protective immunity against A(H1N1)pdm09 viruses during the pandemic and offer some degree of protection against infection with A(H3N2)v viruses

    Influenza B virus-specific CD8+ T-lymphocytes strongly cross-react with viruses of the opposing influenza B lineage

    No full text
    Influenza B viruses fall in two antigenically distinct lineages (B/Victoria/2/1987 and B/Yamagata/16/1988 lineage) that co-circulate with influenza A viruses of the H3N2 and H1N1 subtypes during seasonal epidemics. Infections with influenza B viruses contribute considerably to morbidity and mortality in the human population. Influenza B virus neutralizing antibodies, elicited by natural infections or vaccination, poorly cross-react with viruses of the opposing influenza B lineage. Therefore, there is an increased interest in identifying other correlates of protection which could aid the development of broadly protective vaccines. BLAST analysis revealed high sequence identity of all viral proteins. With two online epitope prediction algorithms, putative conserved epitopes relevant for study subjects used in the present study were predicted. The cross-reactivity of influenza B virus-specific polyclonal CD8+ cytotoxic T-lymphocyte (CTL) populations obtained from HLA-typed healthy study subjects, with intra-lineage drift variants and viruses of the opposing lineage, was determined by assessing their in vitro IFN-γ response and lytic activity. Here, we show for the first time, to the best of our knowledge, that CTLs directed to viruses of the B/Victoria/2/1987 lineage cross-react with viruses of the B/Yamagata/16/1988 lineage and vice versa
    corecore