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Abstract

Dendritic cells express lectins receptors, like DC-SIGN, which allow these cells to sense glycans that are present on various
bacterial and viral pathogens. Interaction of DC-SIGN with carbohydrate moieties induces maturation of dendritic cells and
promotes endocytosis of pathogens which is an important property of these professional antigen presenting cells. Uptake
of pathogens by dendritic cells may lead to cross-presentation of antigens or infection of these cells, which ultimately
results in activation of virus-specific T cells in draining lymph nodes. Little is known about the interaction of DC-SIGN with
influenza A viruses. Here we show that a virus with a non-functional receptor binding site in its hemagglutinin, can replicate
in cells expressing DC-SIGN. Also in the absence of sialic acids, which is the receptor for influenza A viruses, these viruses
replicate in DC-SIGN expressing cells including human dendritic cells. Furthermore, the efficiency of DC-SIGN mediated
infection is dependent on the extent of glycosylation of the viral hemagglutinin.

Citation: Hillaire MLB, Nieuwkoop NJ, Boon ACM, de Mutsert G, Vogelzang-van Trierum SE, et al. (2013) Binding of DC-SIGN to the Hemagglutinin of Influenza A
Viruses Supports Virus Replication in DC-SIGN Expressing Cells. PLoS ONE 8(2): e56164. doi:10.1371/journal.pone.0056164

Editor: Michael C. W. Chan, Centre of Influenza Research, The University of Hong Kong, Hong Kong

Received June 22, 2012; Accepted January 10, 2013; Published February 12, 2013

Copyright: � 2013 Hillaire et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: Two of the authors (AO and GR) also are employed by a company Viroclinics Biosciences BV. This does not alter the authors’ adherence to
all the PLOS ONE policies on sharing data and materials.

* E-mail: g.rimmelzwaan@erasmusmc.nl

¤ Current address: Departments of Medicine, Molecular Microbiology and Pathology, and Immunology, Washington University School of Medicine, St. Louis,
Missouri, United States of America

Introduction

DC-SIGN (dendritic cell-specific intercellular adhesion mole-

cule-3-grabbing nonintegrin) is a C-type lectin mainly present at

the surface of dendritic cells (DC). DC are antigen presenting cells

that play a key role in the induction of the adaptive immune

responses. They are able to present antigens to T cells and induce

their maturation. DC-SIGN signalling modulates the status of DC,

triggers their maturation and promotes the adaptive immune

response [1]. DC-SIGN belongs to the collectin family, and

recognizes glycans of pathogens. For example ligands of DC-SIGN

include bacteria and several viruses such as cytomegalovirus,

Dengue virus, Ebola virus, hepatitis C virus, human immunode-

ficiency virus 1, SARS-coronavirus and West Nile virus

[2,3,4,5,6,7,8,9,10]. Little is known about the interaction of DC-

SIGN with influenza A viruses.

Influenza A viruses belong to the family of the Orthomyxovir-

idae. Their genome consists of eight negative stranded RNA

segments which encode for eleven proteins. Two of these proteins,

hemagglutinin (HA) and neuraminidase (NA), protrude from the

viral envelope. They both recognize sialic acids on carbohydrate

side chains of cellular glycoproteins and glycolipids. HA binds to

sialic acids via its receptor binding site (RBS), which forms a

pocket of highly conserved amino acids [11,12,13]. After binding

to its receptor the virus is internalized via endocytosis. The low pH

of the endosome causes HA to undergo conformational changes

that lead to exposure of a fusion peptide and to fusion of the viral

and endosomal membranes. The RNA segments of the virus are

then delivered to the cytoplasm and transported to the nucleus,

where replication is initiated. The new virions are assembled at the

cell membrane and NA cleaves sialic acid at the cell membrane to

allow the newly synthesized virions to detach from the cell.

Sialic acids are a critical factor for the tropism of the virus,

because their type of linkage to a galactose residue determines

whether they are recognized by specific viruses [14,15]. Widely

present in the avian gastrointestinal tract, a(2,3) linked sialic acids

are preferably recognized by avian influenza A viruses [16,17]. On

the other hand, a(2,6) linked sialic acids are abundant in the

human upper respiratory tract and preferably recognized by

human influenza A viruses [18,19,20].

However, the binding of influenza A viruses to cells may not be

restricted to recognition of sialic acids by the RBS of HA. It was

found that lectin receptors can bind to influenza A viruses,

suggesting that other means of virus attachment and subsequent

entry could be involved [21,22,23,24]. Cellular lectin receptors

may recognize the glycans on HA, allow binding of the virus to the

cells and its internalization. Thus, the extent of glycosylation of

HA is likely to be important for the recognition of the virus by

cellular lectins. Glycosylation is achieved by post translational
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modification of Asparagine residues of the NXS/T motif (X can

be any amino acid except Proline). Numbers, types, and the

positions of glycans vary for each virus, which might affect

recognition of influenza viruses by lectin receptors such as DC-

SIGN. However, the role of DC-SIGN in binding and entry of

influenza viruses has been studied to a limited extent only

[23,25,26]. Only a limited number of viruses has been investigat-

ed. Furthermore, although a correlation between the extent of

glycosylation of viral envelope proteins and binding to DC-SIGN

has been suggested, solid evidence for this is largely lacking. In

addition, it is unclear if DC-SIGN mediated entry could support

productive infection.

By introducing two mutations, L194AY195F, in the RBS of HA

we created a mutant virus that was not able to bind to sialic acids.

This mutant served to prove that DC-SIGN could recognize HA

way and support virus replication. Then we selected nine H1N1

and H3N2 viruses to investigate whether the expression of DC-

SIGN in cell lines and DC could support replication of these

viruses in the absence of sialic acids. Furthermore, we genetically

modified two viruses, A/Netherlands/602/09 (H1N1pdm09) and

A/Netherlands/26/07 (H1N1), and inserted or deleted glycosyl-

ation sites on the head of HA and showed that binding efficiency

of DC-SIGN to HA and subsequent infection rates are determined

by the extent of glycosylation on the head of HA.

Finally we demonstrated that human DC can capture influenza

A virus through interaction with DC-SIGN which leads to

infection of these cells.

Materials and Methods

Cell lines
Madin-Darby Canine Kidney (MDCK) cells were cultured in

Eagle’s Minimum Essential medium; Vero cells in Dulbecco’s

Modified Eagle Medium. MDCK and Vero cells were stably

transfected with a plasmid expressing human DC-SIGN

(pcDNA3-DC-SIGN) that was kindly provided by Dr. V. Kewal

Ramani. 4 mg of the plasmid was nucleofected into MDCK and

Vero cells using the AmaxaH system (Lonza, Cologne, Germany).

The next day the cells were washed and cultured in the presence of

0.25 mg/ml of G148. MDCK and Vero cells expressing DC-

SIGN cells were isolated using CD209 MicroBeads (Miltneyi

Biotec, Germany) following the manufacturer’s instructions. DC-

SIGN expression was monitored by flow-cytometry after incuba-

tion with anti CD209 antibody labeled with phycoerythrin (PE).

After two passages MDCK DC-SIGN and Vero DC-SIGN cells

were cultured in the presence of 0.25 mg/ml of G148. DC-SIGN

expression was checked at each passage by flow cytometry.

DC-SIGN transgenic MDCK and Vero cells were generated

after permission of the ‘‘Committee Genetic Modification’’

(COGEM), permit number 99-090.

Viruses
An influenza virus with a deficient RBS was generated using

reverse genetics. The amino acids at the positions 194 and 195

were targeted since they are crucial for receptor binding

[11,12,27,28].

To this end, the HA gene segment of influenza virus A/Puerto

Rico/8/34 (A/PR/8/34) was modified by site directed mutagen-

esis (QuikChange multi site-directed mutagenesis kit, Stratagene,

Leusden, Netherlands) to yield HA with L194A and Y195F amino

acid substitutions [11,12,27,28].

Bidirectional reverse genetics plasmids [29,30] containing

wildtype (WT) or mutant HA were co-transfected into 293T cells

with a plasmid encoding the NA gene segment of which the

majority was replaced by the gene encoding Green fluorescent

protein (GFP) [30] and plasmids encoding the remaining six gene

segments of influenza virus A/PR/8/34. The supernatants were

used to subsequently inoculate MDCK or MDCK-DC SIGN cells

in the presence of neuraminidase from Vibrio cholerae (Sigma-

Aldrich, Saint Louis, MO) (3.4 U/ml). The viruses, designated

GFP-H1 and L194AY195F-GFP-H1 respectively, were used to

subsequently inoculate MDCK or MDCK DC-SIGN cells

(passage 2 and 3) (Figure 1).

Five H1N1 viruses (A/swine/Iowa/15/30, A/mallard/Nether-

lands/15/05, A/PR/8/34, A/USSR/90/77 and A/Netherlands/

364/06) and four H3N2 viruses (A/swine/oedenrode/7C/96, A/

Netherlands/35/93, A/Netherlands/312/03 and A/Nether-

lands/348/07) were selected and propagated in MDCK cells as

described previously [31]. The culture supernatants of infected

MDCK cells were clarified by low speed centrifugation, aliquoted

and stored at 280uC until use. Infectious virus titers were

determined as described previously [31].

A/Netherlands/602/09 and A/Netherlands/26/07 mutant

viruses were made as previously described [32]. The HA gene

segments of the two viruses were cloned into bidirectional reverse

genetics plasmids, [29,33]. By site-directed mutagenesis (Quik-

Change multi site-directed mutagenesis kit, Stratagene, Leusden,

Netherlands), the N-linked glycosylation sites were reciprocally

exchanged to produce viruses that gained or lost one or more

putative N-linked glycosylation sites. The plasmids encoding wild-

type or mutant HA genes were co-transfected into 293T cells with

plasmids encoding the remaining gene segments of back-bone

strain A/PR/8/34 (H1N1) as described previously. Here we used

A/Netherlands/26/07 and a mutant lacking one glycosylation site

A/Netherlands/26/07-D125. We also used A/Netherlands/602/

09, a mutant lacking one glycosylation site A/Netherlands/602/

09-D276 and a mutant that contains three additional glycosylation

sites that are present in A/Netherlands/26/07 (A/Netherlands/

602/09-VN54 N125 N160).

Replication curves and titration
Viruses L194AY195F-GFP-H1 and GFP-H1 passaged 2 or 3

times were used to inoculate MDCK or MDCK DC-SIGN cells at

a MOI of 0.01. As the titer of passage 1 was too low for virus

L194AY195F-GFP-H1, this passage was not used to determine

multi-step replication kinetics. Culture supernatants were collected

at 0, 6, 12, 24, 48 and 72 hours after inoculation and infectious

virus titers were determined in MDCK or MDCK DC-SIGN cells

as previously described [31].

Flow cytometry
Viruses L194AY195F-GFP-H1 and GFP-H1 that were pas-

saged 2 or 3 times were used to inoculate MDCK or MDCK DC-

SIGN cells at a MOI of 0.01. GFP expression in infected cells was

analyzed by flow cytometry at 24 and 48 hours post inoculation

using a FACS calibur and Cell Quest Pro software (Becton and

Dickinson).

Infection assay
MDCK and Vero cells were treated with 3.4 U/ml neuramin-

idase from Vibrio cholerae (Sigma Aldrich, Zwijndrecht, The

Netherlands) and GolgiStop (BD Biosciences, San Diego, CA) for

30 minutes to remove sialic acids from the cell surface. GolgiStop

is a protein transport inhibitor and its use results in the

accumulation of proteins in the Golgi complex.

Removal of sialic acids was confirmed by flow cytometry after

staining with biotin-labeled Sambucus nigra (SNA) lectin (1/50

dilution) that binds to a(2,6) linked sialic acids and Maackia
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amurensis (MAA) lectin that binds to a(2,3) linked sialic acids for

30 minutes and subsequent staining with streptavidine labeled

with fluorescein isothiocyanate (FITC) (Zebra Biosciences) follow-

ing the manufacturer’s instructions. We used a mixture of lectins

SNA and MAA (both Sanbio BV, Uden, The Netherlands) to

detect all sialic acid present on MDCK and Vero cells. This assay

was performed to confirm that NA treatment was effective and to

confirm the absence of both a2,3 and a2,6 sialosaccharides, which

are both present on MDCK cells [30]

Untreated cells were used as positive controls. After inoculation

with various viruses at a multiplicity of infection of 2 TCID50 per

cell for one hour in the presence of 3.4 u/ml neuraminidase from

vibrio cholerae and GolgiStop (BD Biosciences, San Diego, CA)

the inoculum was aspirated and the cells were washed and

incubated in culture medium for 16 hours. The cells were

transferred to a 96-wells V-bottom plate and washed twice with

PBS containing 2% Fetal Bovine Serum (P2F). They were stained

for viability using AmCyan-labeled Live/dead staining (Invitro-

gen, Oregon, USA). After washing with P2F, the cells were fixed

with 100 ml of cytofix (BD Biosciences, San Diego, CA) according

to the manufacturer’s recommendations. Subsequently, the cells

were washed twice with cytoperm (BD Biosciences, San Diego,

CA) and incubated with a monoclonal antibody specific for the

viral nucleoprotein, labeled with FITC (DAKOCytomation,

Glostrup, Denmark). After washing twice with P2F, the cells were

analyzed by flow cytometry using the DIVA H software. Each of

the assays described above, was optimized and validated carefully

using two different viruses A/Netherlands/364/06 and A/Nether-

lands/348/07. The reproducibility of the assays was confirmed by

performing the assays at least three times. The final experiment

with a large panel of viruses was performed in duplicate.

To confirm that entry was mediated by DC-SIGN, Vero and

Vero DC-SIGN were treated with neuraminidase from vibrio

cholerae for 30 minutes to remove sialic acids from the cell surface

and incubated with or without 5 mg of antibodies to DC-SIGN

(Abcam, Cambridge, UK) or an IgG2b isotype control (R&D

systems, Minneapolis) or 40 mg/ml of mannose. These cells were

subsequently inoculated with influenza virus (A/NL/312/03 or

A/USSR/90/77). The percentage of infected cells compared to

the positive control (untreated cells, still possessing of sialic acid)

was assessed as described above. The infection assay experiments

were performed in duplicate

Dendritic cells
Peripheral blood mononuclear cells (PBMC) obtained from 3

healthy blood donors were isolated using Lymphoprep (Nycomed,

Oslo, Norway) gradient centrifugation and cryopreserved at

2135uC. Blood was obtained from Bloodbank Sanquin, region

South West Netherlands, Rotterdam (Research permission num-

ber 10.084). Permission to use the PBMC for scientific research

was obtained by informed consent. Dendritic cells were purified by

MACS H CD14 beads sorting (Miltenyi Biotec, Bergish Gladbach,

Germany) and cultured for 7 days in the presence of 1000 u/mL

GM-CSF and 200 u/mL IL-4. Then, DC were treated with

3.4 u/ml neuraminidase from vibrio cholerae (Sigma Aldrich,

Zwijndrecht, The Netherlands) for 30 minutes to remove sialic

acids present at the cell surface and incubated with 5 mg of

monoclonal antibody to DC-SIGN (Abcam, Cambridge, UK) or

an IgG2b isotype control (R&D systems, Minneapolis) to test if

blocking DC-SIGN could inhibit infection of DC. They were

subsequently inoculated overnight at a MOI of 3 with influenza

viruses A/Netherlands/348/07 and A/Netherlands/312/03 in

the presence of 3.4 u/ml neuraminidase from Vibrio cholerae

(Sigma Aldrich, Zwijndrecht, The Netherlands). Subsequently the

percentage of infected DC was assessed as described above. After

optimization and validation, the final experiment was performed

in triplicate.

Figure 1. Schematic representation of the passage history and infection experiments with influenza viruses GFP-H1 and
L194AY195F-GFP-H1.
doi:10.1371/journal.pone.0056164.g001

Figure 2. DC-SIGN expression in stably transfected MDCK DC-
SIGN and Vero DC-SIGN cells. MDCK cells (A) and Vero cells (B)
without (dotted line) and transfected with the gene encoding DC-SIGN
(solid line) were analyzed for DC-SIGN expression after staining with a
PE-labeled antibody to DC-SIGN and flow cytometry.
doi:10.1371/journal.pone.0056164.g002
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Results

DC-SIGN expressing cell lines
MDCK and Vero cells were stably transfected to express

human DC-SIGN. The expression of DC-SIGN was assessed by

flow-cytometry (figure 2). Typically .95% of cells expressed DC-

SIGN.

Replication kinetics
Viruses L194AY195F-GFP-H1 and GFP-H1 (passages 2 and 3)

were used to inoculate MDCK or MDCK DC-SIGN cells at a

MOI of 0.01 and culture supernatants were collected at various

time points post inoculation (figure 1). The infectious virus titers

were then determined in MDCK and MDCK DC-SIGN cells.

Figure 3. Replication kinetics of viruses GFP-H1 and L194AY195F-GFP-H1 in MDCK and DC-SIGN-expressing MDCK cells. After
transfection of 293T cells with reverse genetics plasmids, culture supernatants of influenza viruses GFP-H1 (A, C, E, G) and L194AY195F-GFP-H1 (B, D,
F, H) virus passaged in MDCK (A–D) and MDCK-DC-SIGN (E–H) cells were obtained and used to inoculate MDCK (solid symbols) or MDCK DC-SIGN cells
(open symbols) at a moi of 0.01. At the indicated time points post inoculation culture supernatant were tested for the infectious virus titers to
determine the replication kinetics. Virus L194AY195F-GFP-H1 could not be rescued in MDCK cells.
doi:10.1371/journal.pone.0056164.g003
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The results are shown in figure 3. GFP-H1 virus replicated both in

MDCK and MDCK DC-SIGN cells and after 24 hours the virus

titers reached between 106.5 and 108.25 TCID50/ml after

inoculation of MDCK or MDCK DC-SIGN cells for passage 2

and 3, respectively.

In contrast to virus GFP-H1, virus L194AY195F-GFP-H1 could

not be rescued in MDCK cells (after five independent attempts)

and no infectious virus was detectable after two subsequent

passages in these cells (figure 3). However, upon passage in

MDCK DC-SIGN cells, virus L194AY195F-GFP-H1 could

readily be propagated although the titers that were reached were

lower than for virus GFP-H1 (103.5 and 105.25 TCID50/ml

48 hours after inoculation of MDCK DC-SIGN cells for passage 2

and 3, respectively). After two passages in MDCK DC-SIGN cells,

replication of virus L194AY195F-GFP-H1 in MDCK cells was

undetectable, whereas after three passages a virus titer of 103.5

TCID50/ml was reached in MDCK cells 72 hours post inocula-

tion, which was almost 100-fold lower than the titer reached in

MDCK DC-SIGN cells 48 hours post inoculation.

Infection monitored by GFP expression
Viruses L194AY195F-GFP-H1 and GFP-H1 (passages 2 and 3)

were used to inoculate MDCK or MDCK DC-SIGN cells at a

MOI of 0.01 and the expression of GFP was assessed by flow

cytometry at 24 (figure 4) and 48 hours (data not shown) post

inoculation.

The results confirmed that virus GFP-H1 with a functional HA

molecule was able to infect MDCK and MDCK DC-SIGN cells

regardless of the cell line that was used to produce this virus

(figures 4A).

As shown in figure 4B, influenza A virus L194AY195F-GFP-H1

obtained after two or three passages in MDCK DC-SIGN cells

infected a larger proportion of MDCK DC-SIGN cells than

MDCK cells (arrows), which is in accordance with the differences

in replication kinetics observed between the two cell lines.

Influenza A viruses can infect cells via DC-SIGN in the
absence of sialic acid

In order to remove sialic acids, the normal receptor for

influenza A viruses, MDCK and Vero cells were treated with

neuraminidase from Vibrio cholera. The success of this treatment

was confirmed by flow cytometry using biotin-labeled lectins MAA

and SNA (Figure S1). Untreated cells were used as positive

controls for inoculation and the infection percentage of these cells

were assessed. First we compared infection rates of untreated

MDCK with MDCK DC-SIGN cells and Vero and Vero DC-

SIGN cells. As expected the infection percentages did not differ

significantly between cells that expressed DC-SIGN and those that

did not. (Figure S2) (R2 values were of 0.7795 and 0.6416 for Vero

and MDCK cells respectively). Since viruses displayed different

infection rates, the infection rates were expressed relative to the

positive control with sialic acids.

All nine viruses that were tested were able to infect MDCK,

MDCK DC-SIGN, Vero and Vero DC-SIGN cells in the

presence of sialic acids.

After removal of sialic acids from MDCK and Vero cells, the

infection percentages relative to the untreated positive controls

dropped considerably for most viruses. The mean relative number

of infected cells was 13.6 and 2.0% for Vero cells and MDCK cells

respectively (Figure 5). However, in the absence of sialic acids the

expression of DC-SIGN supported the infection of MDCK cells

and Vero cells by a number of influenza A viruses including two

H1N1 viruses, A/USSR/90/77 and A/Netherlands/364/06, and

four H3N2 viruses, A/swine/Oedenrode/7C/96, A/Nether-

lands/35/93, A/Netherlands/312/03 and A/Netherlands/348/

07. Especially influenza A/H3N2 viruses A/Netherlands/312/03

and A/Netherlands/348/07 displayed high infection percentages,

comparable to those of untreated control cells. A/H1N1 viruses

A/swine/Iowa/15/30, A/mallard/Netherlands/15/05 and A/

PuertoRico/8/34 displayed low infection percentages in MDCK-

DC-SIGN cells devoid of sialic acids (0%, 1.9% and 2.6%

respectively) and in Vero DC-SIGN cells (3.6%, 10.9% and 3.1%

respectively) (figure 5 A and B). The differences observed between

viruses may be explained by differences in the number of N-linked

glycosylation sites present on HA (table 1). The number of putative

N-linked glycosylation sites predicted with the online software

NGlycNet correlated with DC-SIGN mediated infection of the

cells. However, it remains unclear to which extent these

glycosylation sites are in fact utilized.

To confirm that entry of these viruses was mediated via DC-

SIGN, Vero and Vero DC-SIGN cells were incubated with DC-

Figure 4. GFP expression after infection with L194AY195F-GFP
and GFP-H1 in MDCK and DC-SIGN-expressing MDCK cells.
MDCK and MDCK DC-SIGN cells were inoculated with influenza viruses
GFP-H1 (A) and L194AY195F-GFP-H1 (B) at a MOI of 0.01 (solid lines).
Both viruses were passaged in MDCK-DC-SIGN cells two or three times
as indicated. Twenty-four hours post inoculation the cells were tested
for GFP expression by flow cytometry. Uninfected cells were included as
negative controls (dotted lines). Infection experiments with GFP-H1
virus passaged in MDCK cells essentially gave the same results as the
virus passaged in MDCK DC-SIGN cells (data not shown).
doi:10.1371/journal.pone.0056164.g004
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SIGN blocking antibodies and subsequently infected with influ-

enza viruses A/NL/312/03 and A/USSR/90/77. As shown in

figure 5 E and F, the infection rates were reduced in the presence

of these antibodies but not in the presence of control antibodies of

the same isotype. Furthermore, also in presence of mannose, the

entry was blocked, indicating that DC-SIGN was functional and

able to bind to mannan.

Influenza A viruses can infect DC via DC-SIGN
DC from three different healthy blood donors were isolated,

treated with neuraminidase from Vibrio cholerae or not and

subsequently inoculated with A/H3N2 viruses. Infection rates of

DC obtained from different donors varied. Donor 1 displayed

6.6% and 20.3% infected cells after infection with A/Nether-

lands/348/07 and A/Netherlands/312/03 respectively. Donor 2

showed 5% and 9.6% infected cells after infection with A/

Netherlands/348/07 and A/Netherlands/312/03 respectively

and donor 3 displayed infection rates of 37% and 65%

respectively. In the absence of sialic acids the infection percentages

were reduced and ranged between 6 and 23% of those of

untreated DC, depending on the virus and blood donor tested

(figure 6). However, in presence of blocking anti-DC-SIGN

antibodies this percentage further decreased significantly

(p,0.05, Mann-Whitney test) whereas addition of control

Figure 5. Expression of DC-SIGN supports replication of influenza A viruses in the absence of sialic acids. MDCK (A and C) and Vero
cells (B and D) transfected with the DC-SIGN gene (black bars) or not (white bars), were treated with neuraminidase from vibrio cholerae and
GolgiStop for 30 minutes to remove sialic acids from the cell surface. These cells were subsequently inoculated with five different A/H1N1 viruses (A
and B) and four A/H3N2 viruses (C and D). The percentage infected cells relative to the untreated control cells, still possessing sialic acid, was assessed
after detecting infected cells using a FITC-labelled antibody to the viral nucleoprotein and flow-cytometry. To confirm that the entry was mediated
via DC-SIGN, Vero and Vero DC-SIGN were treated with neuraminidase from vibrio cholerae for 30 minutes to remove sialic acids from the cell surface
and incubated with or without antibodies to DC-SIGN or an isotype control antibody as indicated (E and F). These cells were subsequently inoculated
with influenza viruses. NL/312/03 and USSR/90/77. The percentage of infected cells compared to the positive control (untreated cells, still possessing
sialic acid) was assessed as described above.
doi:10.1371/journal.pone.0056164.g005
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antibody did not have a significant effect on the infection

percentages.

Effect of glycosylation of HA on DC-SIGN mediated
infection

Since DC-SIGN interacts with glycans present on membrane

glycoproteins, we wished to investigate the effect of N-linked

glycosylation of HA on binding to, and infection of, DC-SIGN

expressing cells. To this end, we selected two viruses A/Nether-

lands/602/09 (H1N1pdm09) and A/Netherlands/26/07 (H1N1)

and of which modification glycosylation sites on the head of the

hemagglutinin were inserted or deleted. Influenza A virus A/

Netherlands/26/07 infected DC-SIGN expressing Vero and

MDCK cells, but hardly cells not expressing DC-SIGN

(Figure 7). However, deletion of the glycosylation site at position

125 of HA (A/Netherlands/26/07-D125) severely impaired the

capacity to infect cells in a DC-SIGN dependent fashion (figure 7).

Influenza A virus A/Netherlands/602/09 displayed a low

infection percentage in MDCK DC-SIGN (13.7%+/20.2%)

and Vero DC-SIGN cells (11.5%+/20.3%), which was compa-

rable to those of cells not expressing DC-SIGN. Influenza A virus

A/Netherlands/602/09 lacking the N-linked glycosylation sites at

position 276 (D276) infected cells, including DC-SIGN expressing

cells, inefficiently. In contrast, insertion of three glycosylation sites

in HA of A/Netherlands/602/09 (A/Netherlands/602/09-VN54

N125 N160), increased infection percentages of DC-SIGN

expressing cells considerably compared to wild type virus and this

virus infected DC-SIGN expressing cells almost as good as

untreated cells with sialic acids on their surface (96%+/21% and

70.6%+/23% for MDCK DC-SIGN and Vero DC-SIGN,

respectively).

Discussion

In the present study we show that expression of DC-SIGN

facilitates infection of cells by influenza A viruses independent of

sialic acids, the natural receptor for these viruses, expressed on the

target cell

First we generated a virus with mutations in its receptor binding

site. It proved impossible to rescue virus L194AY195F-GFP-H1 in

MDCK cells. However, using MDCK cells constitutively express-

ing DC-SIGN this virus was readily rescued. Furthermore, the

Table 1. Number of putative N linked glycosylation sites present in HA1 and in HA2 of the viruses used in this study.

Virus Number of putative glycosylation sites in Predicted number of glycosylation sites in

HA1 HA2 HA1 HA2

swine/Iowa/15/30 1 5 1 4

mallard/NL/15/05 ND ND ND ND

PuertoRico/8/34 1 6 4 5

USSR/90/77 4 6 3 5

NL/364/06 4 5 4 5

swine/oedenrode/7C/96 4 6 3 4

NL/35/93 2 5 1 4

NL/312/03 7 4 6 4

NL/348/07 7 4 5 3

The software NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/)was used to predict the number of glycosylation sites that will be utilized.
doi:10.1371/journal.pone.0056164.t001

Figure 6. DC-SIGN expression on DC supports replication of influenza virus in absence of sialic acids. DC were treated with
neuraminidase from vibrio cholerae for 30 minutes to remove sialic acids from the cell surface and incubated with or without antibodies to DC-SIGN
or an isotype control antibody as indicated. These cells were subsequently inoculated with two A/H3N2 influenza viruses. The percentage of infected
cells compared to the positive control (untreated cells, still possessing of sialic acid) was assessed as described above.
doi:10.1371/journal.pone.0056164.g006
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mutant virus replicated better in DC-SIGN expressing cells than in

normal MDCK cells. However, after three passages in MDCK

DC-SIGN cells, virus L194AY195F-GFP-H1 displayed some

replication in MDCK cells 48 hours post inoculation, although

the kinetics of replication was delayed and the extent of replication

reduced compared to that in MDCK cells expressing DC-SIGN.

We determined the nucleotide sequence after each passage and

did not find any sign of reversion of the RBS to the wild type

sequence, although the emergence of minor variants that bind

sialic acid cannot be excluded. Of interest, it has been recently

demonstrated that influenza A viruses can enter CHO cells in a

sialic acid independent way, although the exact mechanism

remains elusive [34]. Alternatively, MDCK cells may support

replication of the mutant virus by another unknown, but

inefficient, way. Of note, we used A/PR/8/34 for generating a

RBS deficient virus. However, in the absence of sialic acids, this

virus replicated relatively poorly in DC-SIGN expressing MDCK

and Vero cells, which may be related to the relative low number of

N-Linked glycosylation sites in its HA and which may have

reduced the window of opportunity to measure differences in

infection rates in cells with and without DC-SIGN.

Next we explored an opposite approach, by removing the

natural receptor for influenza A viruses from MDCK and Vero

cells by treatment with neuraminidase and assessed the effect of

DC-SIGN expression on infection ratesof nine different influenza

A viruses of the H1N1 and H3N2 subtypes obtained from various

species. Indeed for most viruses tested, the presence of DC-SIGN

mediated virus entry and infection of the cells which can be

explained by binding of DC-SIGN to glycans on the HA of these

viruses, followed by endocytosis of the virus and fusion of the viral

envelope with the endosomal membrane, the initial steps in the

virus replication cycle. Of interest, the viruses that displayed

efficient DC-SIGN mediated infection in the absence of sialic

acids, had relatively large number of putative N-linked glycosyl-

ation sites on their HA

In order to confirm that indeed the interaction between DC-

SIGN and glycans on HA are at the basis of the observed

increased infection percentages in DC-SIGN expressing cells, we

used genetically modified influenza A/H1N1 viruses, A/Nether-

lands/26/07 and A/Netherlands/602/09 (H1N1pdm09), of

which N-linked glycosylation sites were reciprocally exchanged

to produce viruses that gained or lost one or more putative N-

linked glycosylation sites. In general, removal of N-linked

glycosylation sites, reduced DC-SIGN mediated infection of

MDCK and Vero cells, whereas addition of N-linked glycosylation

sites increased infection of these cells (figure 7). Thus, DC-SIGN

can act as an alternative receptor for influenza A viruses by

binding to glycans present on HA and can initiate the virus

replication cycle. Although, it has been suggested that the extent of

glycosylation of HA determine the efficiency of recognition by

DC-SIGN [25], we provide here for the first time solid evidence

that this indeed is the case using a large panel of viruses and

isogenic viruses with mutations in N-linked glycosylation sites only.

Of interest, it was also suggested that H5N1 viruses can bind to

DC-SIGN [23]. However, little infection of DC-SIGN expressing

cells was observed after sialidase treatment of the cells. This might

be explained by poor utilization of putative N-linked glycosylation

sites in HA of the virus used, preventing binding to DC-SIGN.

This was also observed after investigating the binding of H5N1

viruses to soluble C-type lectins such as porcine surfactant protein

D [35].

Finally, we tested if DC, the cells of interest expressing DC-

SIGN in vivo [36,37] in addition to human alveolar macrophages

[38], also can use this receptor for binding influenza A viruses. To

this end, sialic acids were removed and it was shown that the

infection of DC could be inhibited by a monoclonal antibody

specific for DC-SIGN. Thus, DC can become infected in the

absence of sialic acids after binding to glycans present on HA of

influenza A virus as suggested previously for an H5N1 virus and

DC cocultured with MDCK cells [23]. Most likely, the non-

specific binding of glycosylated pathogens is a universal property

of DC and may contribute to the induction of adaptive immune

responses to these pathogens. Our findings may implicate that

heavily glycosylated influenza A viruses more efficiently infect DC

Figure 7. The number of glycosylation sites present on HA determines the virus infection rates in DC-SIGN expressing cells. MDCK
(A) and Vero (B) cells, transfected with the DC-SIGN gene (black bars) or not (white bars) were treated with neuraminidase from vibrio cholerae and
GolgiStop for 30 minutes to remove sialic acids from the cell surface. These cells were subsequently inoculated with A/Netherlands/26/07, A/
Netherlands/26/07-D125, A/Netherlands/602/09, A/Netherlands/602/09-D276 or A/Netherlands/602/09-VN54 N125 N160. The percentage of infected
cells relative to the positive control (untreated cells still possessing sialic acid) was assessed after detecting infected cells using a FITC-labeled
antibody to the viral nucleoprotein and flow-cytometry.
doi:10.1371/journal.pone.0056164.g007
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and subsequently may induce stronger immune responses than

viruses that are less heavily glycosylated. Indeed the extent of

glycosylation was shown to be inversely correlated with the

virulence of influenza A viruses [39,40,41], which was attributed

to increased sensitivity to the action of collectins, defence

molecules of the innate immune system. Increased susceptibility

to infection of DC may further blunt infection by heavily

glycosylated influenza A viruses.

Collectively, we have shown that DC-SIGN can capture

influenza A viruses and support infection of cells that express

DC-SIGN. The efficiency of this process is dependent of the extent

of glycosylation of the viral HA. Further research is required to

relate the extent of DC-SIGN mediated infection of DC to the

magnitude of the immune response to infection, the virus specific

T cell response in particular.

Supporting Information

Figure S1 Removal of sialic acids from cells by treatment with

neuraminidase. Vero and MDCK cells were treated with

neuraminidase from vibrio cholerae and GolgiStop for 30 minutes

to remove sialic acids from the cell surface. After incubation with a

mixture of biotin-labelled lectins SNA and MAA and subsequently

with FITC-labelled streptavidin, the removal of sialic acids was

confirmed by flow cytometry (in grey). The dotted line represents

unstained cells and the black line cells represent the background

staining of cells that were incubated with FITC-labelled

streptavidin only.

(TIF)

Figure S2 Comparison of infection rates of MDCK and Vero

cells with those expressing DC-SIGN after inoculation with 13

different viruses used in the present study at a multiplicity of

infection of 2 TCID50 per cell. Each symbol represents an

individual virus. These infection rates were used to calculate the

‘‘percentage of infection compared to positive control’’ showed in

figure 5 and 6.

(TIF)
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