5,025 research outputs found

    [N]pT Monte Carlo Simulations of the Cluster-Crystal-Forming Penetrable Sphere Model

    Full text link
    Certain models with purely repulsive pair interactions can form cluster crystals with multiply-occupied lattice sites. Simulating these models' equilibrium properties is, however, quite challenging. Here, we develop an expanded isothermal-isobaric [N]pT[N]pT ensemble that surmounts this problem by allowing both particle number and lattice spacing to fluctuate. We apply the method with a Monte Carlo simulation scheme to solve the phase diagram of a prototypical cluster-crystal former, the penetrable sphere model (PSM), and compare the results with earlier theoretical predictions. At high temperatures and densities, the equilibrium occupancy nceqn_{\mathrm{c}}^{\mathrm{eq}} of face-centered cubic (FCC) crystal increases linearly. At low temperatures, although nceqn_{\mathrm{c}}^{\mathrm{eq}} plateaus at integer values, the crystal behavior changes continuously with density. The previously ambiguous crossover around T∼0.1T\sim0.1 is resolved

    Change in the magnitude and mechanisms of global temperature variability with warming

    Get PDF
    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modelling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual pre-industrial conditions may have only limited relevance for understanding the unforced GMST variability of the future

    The wall shear rate distribution for flow in random sphere packings

    Full text link
    The wall shear rate distribution P(gamma) is investigated for pressure-driven Stokes flow through random arrangements of spheres at packing fractions 0.1 <= phi <= 0.64. For dense packings, P(gamma) is monotonic and approximately exponential. As phi --> 0.1, P(gamma) picks up additional structure which corresponds to the flow around isolated spheres, for which an exact result can be obtained. A simple expression for the mean wall shear rate is presented, based on a force-balance argument.Comment: 4 pages, 3 figures, 1 table, RevTeX 4; significantly revised with significantly extended scop

    Thermal Analysis of Fly Ashes Sourced from European Non-Blended Coals

    Get PDF
    Fly ashes exist as a mixture of major amorphous phases and minor crystalline phases. For commercial applications, such as in concretes and for the production of zeolites, it would be desirable to be able to predict the reactivity of fly ashes. The amorphous phase dominates degradation behaviour, because glasses have a higher potential energy than the equivalent crystal structure and the variation of bond angles and distances in a glass make the bond breakage easier. Despite the large quantities of fly ash produced annually by coal-burning power plants, there have been very few studies investigating the microstructure and composition of the amorphous component. In particular, there has been little research undertaken in measuring the glass transition temperature (Tg), which can be directly correlated to the chemical reactivity of the glass phase. Thirteen European fly ashes were used for the present study. Differential scanning calorimetry (DSC) was employed to determine the presence of transition temperatures and any other thermal events (exotherms or endotherms) in the glassy phase of the fly ashes. Several different but distinct behaviours were evident in the DSC traces with Tg values visible for six of the ashes. The results suggest that thermal analysis has potential as a technique for fly ash characterisation. © 2002 Society of Chemical Industry

    Phase behavior of a confined nano-droplet in the grand-canonical ensemble: the reverse liquid-vapor transition

    Full text link
    The equilibrium density distribution and thermodynamic properties of a Lennard-Jones fluid confined to nano-sized spherical cavities at constant chemical potential was determined using Monte Carlo simulations. The results describe both a single cavity with semipermeable walls as well as a collection of closed cavities formed at constant chemical potential. The results are compared to calculations using classical Density Functional Theory (DFT). It is found that the DFT calculations give a quantitatively accurate description of the pressure and structure of the fluid. Both theory and simulation show the presence of a ``reverse'' liquid-vapor transition whereby the equilibrium state is a liquid at large volumes but becomes a vapor at small volumes.Comment: 13 pages, 8 figures, to appear in J. Phys. : Cond. Mat

    Characterization of a succession of small insect viruses in a wild South African population of Nudaurelia cytherea capensis (Lepidoptera: Saturniidae)

    Get PDF
    The Tetraviridae are a family of small insect RNA viruses first discovered in South Africa some 40 years ago. They consist of one or two single-stranded (+) RNAs encapsidated in an icosahedral capsid of approximately 40 nm in diameter, with T = 4 symmetry. The type members of the two genera within this family, Nudaurelia β virus (NβV) and Nudaurelia ω virus (NωV), infect Nudaurelia cytherea capensis (pine emperor moth) larvae. The absence of N. capensis laboratory colonies and tissue culture cell lines susceptible to virus infection have limited research on the biology of NβV and NωV because the availability of infectious virus is dependent upon sporadic outbreaks in the wild N. capensis populations. In September 2002, dead and dying N. capensis larvae exhibiting symptoms similar to those reported previously in other tetravirus infections were observed in a wild population in a pine forest in the Western Cape province of South Africa. We report here the isolation of three small insect viruses from this population over a period of three years. Transmission electron microscopy and serological characterization indicate that all three are tetra-like virus isolates. One isolate was shown by cDNA sequence analysis to be NβV, which was thought to have been extinct since 1985. The two other isolates are likely new tetraviruses, designated Nudaurelia ψ virus (NψV) and Nudaurelia ζ virus (NζV), which are morphologically and serologically related to NωV and NβV, respectively

    Modelling of the Glass Phase in Fly Ashes using Network Connectivity Theory

    Get PDF
    The amorphous phase of fly ash dominates degradation behaviour because glass has a higher potential energy than the equivalent crystal structure and the variation of bond angles and distances in a glass make the bond breakage easier. It would be advantageous to predict the presence and subsequent degradability of glass on the basis of the solid-state chemistry of the fly ash. To this end, and inorganic polymer model was applied to a selection of European fly ashes to determine the value known as cross-link density (CLD). A cross-link density value of less than two implies that the material is amorphous in nature and the lower the CLD below two, the greater the reactivity and solubility of the glass. Applying this model may facilitate the selection of the most suitable fly ash for a particular recycling application where glass reactivity or dissolution rates are important. To check the applicability of the model to the glass phase of fly ashes, CLD calculations have been performed by removing the contribution to the ash composition from the known crystal phases. The model would be then expected to give a maximum CLD value of two for all the materials. While this approach has been applied successfully to synthetic glasses and glass-ceramics in the past, only very limited applicability has been found with fly ashes. This is believed to be due to the inherent heterogeneity of the glass phase in fly ash. © 2002 Society of Chemical Industry
    • …
    corecore