75,516 research outputs found

    A categorification of twisted Heisenberg algebras

    No full text

    Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock

    Get PDF
    Large-eddy simulations of the Richtmyer–Meshkov instability with reshock are pre- sented and the results are compared with experiments. Several configurations of shocks initially travelling from light (air) to heavy (sulfur hexafluoride, SF6) have been simulated to match previous experiments and good agreement is found in the growth rates of the turbulent mixing zone (TMZ). The stretched-vortex subgrid model used in this study allows for subgrid continuation modelling, where statistics of the unresolved scales of the flow are estimated. In particular, this multiscale modelling allows the anisotropy of the flow to be extended to the dissipation scale, eta, and estimates to be formed for the subgrid probability density function of the mixture fraction of air/SF6 based on the subgrid variance, including the effect of Schmidt number

    Particle acceleration by circularly and elliptically polarised dispersive Alfven waves in a transversely inhomogeneous plasma in the inertial and kinetic regimes

    Full text link
    Dispersive Alfven waves (DAWs) offer, an alternative to magnetic reconnection, opportunity to accelerate solar flare particles. We study the effect of DAW polarisation, L-, R-, circular and elliptical, in different regimes inertial and kinetic on the efficiency of particle acceleration. We use 2.5D PIC simulations to study how particles are accelerated when DAW, triggered by a solar flare, propagates in transversely inhomogeneous plasma that mimics solar coronal loop. (i) In inertial regime, fraction of accelerated electrons (along the magnetic field), in density gradient regions is ~20% by the time when DAW develops 3 wavelengths and is increasing to ~30% by the time DAW develops 13 wavelengths. In all considered cases ions are heated in transverse to the magnetic field direction and fraction of the heated particles is ~35%. (ii) The case of R-circular, L- and R- elliptical polarisation DAWs, with the electric field in the non-ignorable transverse direction exceeding several times that of in the ignorable direction, produce more pronounced parallel electron beams and transverse ion beams in the ignorable direction. In the inertial regime such polarisations yield the fraction of accelerated electrons ~20%. In the kinetic regime this increases to ~35%. (iii) The parallel electric field that is generated in the density inhomogeneity regions is independent of m_i/m_e and exceeds the Dreicer value by 8 orders of magnitude. (iv) Electron beam velocity has the phase velocity of the DAW. Thus electron acceleration is via Landau damping of DAWs. For the Alfven speeds of 0.3c the considered mechanism can accelerate electrons to energies circa 20 keV. (v) The increase of mass ratio from m_i/m_e=16 to 73.44 increases the fraction of accelerated electrons from 20% to 30-35% (depending on DAW polarisation). For the mass ratio m_i/m_e=1836 the fraction of accelerated electrons would be >35%.Comment: Final accepted version. To appear in Physics of Plasmas, volume 18, issue 9 (September 2011

    Converting NAD83 GPS heights into NAVD88 elevations with LVGEOID, a hybrid geoid height model for the Long Valley volcanic region, California

    Get PDF
    A GPS survey of leveling benchmarks done in Long Valley Caldera in 1999 showed that the application of the National Geodetic Survey (NGS) geoid model GEOID99 to tie GPS heights to historical leveling measurements would significantly underestimate the caldera ground deformation (known from other geodetic measurements). The NGS geoid model was able to correctly reproduce the shape of the deformation, but required a local adjustment to give a realistic estimate of the magnitude of the uplift. In summer 2006, the U.S. Geological Survey conducted a new leveling survey along two major routes crossing the Long Valley region from north to south (Hwy 395) and from east to west (Hwy 203 – Benton Crossing). At the same time, 25 leveling bench marks were occupied with dual frequency GPS receivers to provide a measurement of the ellipsoid heights. Using the heights from these two surveys, we were able to compute a precise geoid height model (LVGEOID) for the Long Valley volcanic region. Our results show that although the LVGEOID and the latest NGS GEOID03 model practically coincide in areas outside the caldera, there is a difference of up to 0.2 m between the two models within the caldera. Accounting for this difference is critical when using the geoid height model to estimate the ground deformation due to magmatic or tectonic activity in the calder

    Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulations

    Get PDF
    We study the shock-driven turbulent mixing that occurs when a perturbed planar density interface is impacted by a planar shock wave of moderate strength and subsequently reshocked. The present work is a systematic study of the influence of the relative molecular weights of the gases in the form of the initial Atwood ratio A. We investigate the cases A = ± 0.21, ±0.67 and ±0.87 that correspond to the realistic gas combinations air–CO_2, air–SF_6 and H_2–air. A canonical, three-dimensional numerical experiment, using the large-eddy simulation technique with an explicit subgrid model, reproduces the interaction within a shock tube with an endwall where the incident shock Mach number is ~1.5 and the initial interface perturbation has a fixed dominant wavelength and a fixed amplitude-to-wavelength ratio ~0.1. For positive Atwood configurations, the reshock is followed by secondary waves in the form of alternate expansion and compression waves travelling between the endwall and the mixing zone. These reverberations are shown to intensify turbulent kinetic energy and dissipation across the mixing zone. In contrast, negative Atwood number configurations produce multiple secondary reshocks following the primary reshock, and their effect on the mixing region is less pronounced. As the magnitude of A is increased, the mixing zone tends to evolve less symmetrically. The mixing zone growth rate following the primary reshock approaches a linear evolution prior to the secondary wave interactions. When considering the full range of examined Atwood numbers, measurements of this growth rate do not agree well with predictions of existing analytic reshock models such as the model by Mikaelian (Physica D, vol. 36, 1989, p. 343). Accordingly, we propose an empirical formula and also a semi-analytical, impulsive model based on a diffuse-interface approach to describe the A-dependence of the post-reshock growth rate

    A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows

    Get PDF
    This paper describes a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described with an explicit centered scheme used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Three-dimensional numerical simulations of a Richtmyer-Meshkov instability are presented

    Converging shocks in elastic-plastic solids

    Get PDF
    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e = e_(s)(I_1)+e_(h)(ρ,ς), where e_(s) accounts for shear through the first invariant of the Cauchy–Green tensor, and e_(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e_(h) = e_(h)(ρ), with a power-law dependence e_(h) ∝ ρ_(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M ∝ [log(1/R)]^α, independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M ∝ R^(−(s−1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part eh is that of an ideal gas, is also tested, recovering the strong-shock limit M∝R^(−(s−1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ−1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear modulus and yield stress modify the compression ratio and velocity of the shock far from the axis or origin. A characterization of the elastic-plastic transition in converging shocks, which involves an elastic precursor and a plastic compression region, is finally exposed
    corecore