64,668 research outputs found
T-Parity Violation by Anomalies
Little Higgs theories often rely on an internal parity ("T-parity'') to
suppress non-standard electroweak effects or to provide a dark matter
candidate. We show that such a symmetry is generally broken by anomalies, as
described by the Wess-Zumino-Witten term. We study a simple SU(3) x SU(3)/SU(3)
Little Higgs scheme where we obtain a minimal form for the topological
interactions of a single Higgs field. The results apply to more general models,
including [SU(3) x SU(3)/SU(3)]^4, SU(5)/SO(5), and SU(6)/Sp(6).Comment: 17 page
INTERP3: A computer routine for linear interpolation of trivariate functions defined by nondistinct unequally spaced variables
A report on the computer routine INTERP3 is presented. The routine is designed to linearly interpolate a variable which is a function of three independent variables. The variables within the parameter arrays do not have to be distinct, or equally spaced, and the array variables can be in increasing or decreasing order
LARC-13 adhesive development
A LARC-13 type adhesive system was developed and property data obtained that demonstrated improved thermomechanical properties superior to base LARC-13 adhesive. An improved adhesive for 589 K (600 F) use was developed by physical or chemical modification of LARC-13. The adhesive was optimized for titanium and composite bonding, and a compatible surface preparation for titanium and composite substrates was identified. The data obtained with the improved adhesive system indicated it would meet the 589 K (600 F) properties desired for application on space shuttle components. Average titanium lap shear data were: (1) 21.1 MPa (3355 psi) at RT, (2) 13.0 MPa (1881 psi) at 600 F, and (3) 16.4 MPa (2335) after aging 125 hours at 600 F and tested at 600 F
Scanning apertureless microscopy below the diffraction limit: Comparisons between theory and experiment
The exact nature of the signal in scanning apertureless microscopy techniques is the subject of much debate. We have sought to resolve this controversy by carrying out simulations and experiments on the same structures. Simulations of a model of tip–sample coupling are shown to exhibit features that are in agreement with experimental observations at dimensions below the diffraction limit. The simulation of the optical imaging process is carried out using atomic force microscope data as a topographical template and a tip–sample dipole coupling model as the source of optical signal. The simulations show a number of key fingerprints including a dependence on the polarization of the external laser source, the size of the tip, and index of refraction of the sample being imaged. The experimental results are found to be in agreement with many of the features of the simulations. We conclude that the results of the dipole coupling theory agree qualitatively with experimental data and that apertureless microscopy measures optical properties, not just topography
Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark
In models of dynamical electroweak symmetry breaking which sensitively
involve the third generation, such as top quark condensation, the effects of
the new dynamics can show up experimentally in Z->b\bar{b}. We compare the
sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models
of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new
strongly coupled U(1) gauge bosons, while it is generally less sensitive a
probe to new physics involving color octet gauge bosons as is top quark
production itself. Nonetheless, to accomodate a significant excess in
Z->b\bar{b} requires choosing model parameters that may be ruled out within run
I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-
Robust CNOT gates from almost any interaction
There are many cases where the interaction between two qubits is not
precisely known, but single qubit operations are available. In this paper we
show how, regardless of an incomplete knowledge of the strength or form of the
interaction between two qubits, it is often possible to construct a CNOT gate
which has arbitrarily high fidelity. In particular, we show that oscillations
in the strength of the exchange interaction in solid state Si and Ge structures
are correctable.Comment: 5 pages, 2 figure
Origin of the fast magnetization tunneling in the single-molecule magnet [Ni(hmp)(tBuEtOH)Cl]4
We present high-frequency angle-dependent EPR data for crystals of
[NixZn1-x(hmp)(t-BuEtOH)Cl]4 (x = 1 and 0.02). The x = 1 complex behaves as a
single-molecule magnet at low temperatures, displaying hysteresis and
exceptionally fast magnetization tunneling. We show that this behavior is
related to a 4th-order transverse crystal-field interaction, which produces a
significant tunnel-splitting (~10 MHz) of the ground state of this S = 4
system. The magnitude of the 4th-order anisotropy, and the dominant axial term
(D), can be related to the single-ion interactions (Di and Ei) at the
individual NiII sites, as determined for the x = 0.02 crystals.Comment: 11 pages including 2 figure
Evaluation of high temperature structural adhesives for extended service, phase 4
The evaluation of three phenylquinoxaline polymers as high temperature structural adhesives is presented. These included an experimental crisskubjabke oiktner (X-PQ) and two experimental materials (PPQ-2501) and (PPQ-HC). Lap shear, crack extension, and climing drum peel specimens were fabricated from all three polymers, and tested after thermal, combined thermal/humidity, and stressed Skydrol exposure. All three polymers generally performed well as adhesives at initial test temperatures from 219K (-67 F) to 505K (450 F) and after humidity exposure. The 644K (700 F) cured test specimens exhibited superior Skydrol resistance and thermal stability at 505K (450 F) when compared to the 602K (625 F) cured test specimens
- …