59,615 research outputs found
Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark
In models of dynamical electroweak symmetry breaking which sensitively
involve the third generation, such as top quark condensation, the effects of
the new dynamics can show up experimentally in Z->b\bar{b}. We compare the
sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models
of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new
strongly coupled U(1) gauge bosons, while it is generally less sensitive a
probe to new physics involving color octet gauge bosons as is top quark
production itself. Nonetheless, to accomodate a significant excess in
Z->b\bar{b} requires choosing model parameters that may be ruled out within run
I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-
Prefeasibility study of a space environment monitoring system /Semos/
Prefeasibility study of Space Environment Monitoring System within framework of Apollo Applications Progra
Microwave characteristics of GaAs MMIC integratable optical detectors
Interdigitated photoconductive detectors were fabricated on microwave device structures, making them easily integratable with Monolithic Microwave Integrated Circuits (MMIC). Detector responsivity as high as 2.5 A/W and an external quantum efficiency of 3.81 were measured. Response speed was nearly independent of electrode geometry, and all detectors had usable response at frequencies to 6 GHz. A small signal model of the detectors based on microwave measurements was also developed
Sensing of Fluctuating Nanoscale Magnetic Fields Using NV Centres in Diamond
New magnetometry techniques based on Nitrogen-Vacancy (NV) defects in diamond
allow for the imaging of static (DC) and oscillatory (AC) nanoscopic magnetic
systems. However, these techniques require accurate knowledge and control of
the sample dynamics, and are thus limited in their ability to image fields
arising from rapidly fluctuating (FC) environments. We show here that FC fields
place restrictions on the DC field sensitivity of an NV qubit magnetometer, and
that by probing the dephasing rate of the qubit in a magnetic FC environment,
we are able to measure fluctuation rates and RMS field strengths that would be
otherwise inaccessible with the use of DC and AC magnetometry techniques. FC
sensitivities are shown to be comparable to those of AC fields, whilst
requiring no additional experimental overheads or control over the sample.Comment: 5 pages, 4 figure
- âŠ