36 research outputs found

    Three important endoparasites of laboratory woodchucks (Marmota monax) caught in the wild: Capillaria hepatica, Ackertia marmotae, and Taenia crassiceps

    Get PDF
    Wild animals kept in laboratories are potential carriers of viruses, bacteria and parasites. These might be a risk to people who have contact with those animals. We demonstrate this by the example of the American laboratory woodchuck (Marmota monax) which has been kept in our laboratory for 6 years (n=155). Beside Capillaria hepatica, the filaria Ackertia marmotae and the cestode Taenia crassiceps have been found. These three species were recognised outside the routine monitoring for parasites. As C. hepatica and T. crassiceps are human pathogens, the potential for transmission to humans and other woodchucks is estimated. Precautionary measures such as treatment to eradicate and hygiene instructions are discussed

    Mutant hepatitis B virus surface antigens (HBsAg) are immunogenic but may have a changed specificity

    Get PDF
    AbstractMutant hepatitis B virus with substitutions within the coding region for HBV surface antigen (HBsAg) has been found naturally in chronic carriers. It is therefore important to clarify whether the identified substitutions within the HBsAg have impact on the antigenicity and immunogenicity of HBsAg. A total of nine mutated HBV s-genes with single representative mutations were generated by site-directed mutagenesis and subcloned into an expression vector. The binding of polyclonal and monoclonal antibodies to these mutant HBsAg (mtHBsAg) was tested by immunofluorescence (IF) staining of cells transfected with the expression vectors. The amino acid (aa) substitutions like G145R, F134S, and C147W affected the binding of anti-HBs antibodies to corresponding mtHBsAg to different extents. The impact of aa substitutions G145R and F134S on the immunogenicity was accessed by genetic immunization of mice with vectors expressing middle HBsAg with the corresponding mutations. The immunized mice developed antibodies to recombinant HBsAg containing the HBV preS region and HBsAg-specific cytotoxic T-cell. However, the development of antibody response to wild-type small HBsAg was significantly impaired by the aa substitutions in HBsAg. Based on this fact, we further investigated whether the mtHBsAg with the aa substitution G145R is able to induce mutant-specific antibody responses. Strikingly, serum samples from mice immunized with mtHBsAg with G145R recognized plasma-derived mtHBsAg. Two mouse MAbs specific to mtHBsAg were generated. One MAb recognized mtHBsAg with G145R but not wild type and other mtHBsAg. We conclude that HBsAg with aa substitutions are immunogenic but may have a changed fine specificity

    Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Periprosthetic osteolysis is a major cause of aseptic loosening in joint arthroplasty. This study investigates the impact of CT (calcitonin) deficiency and CT substitution under in-vivo circumstances on particle-induced osteolysis in <it>Calca </it>-/- mice.</p> <p>Methods</p> <p>We used the murine calvarial osteolysis model based on ultra-high molecular weight polyethylene (UHMWPE) particles in 10 C57BL/6J wild-type (WT) mice and twenty <it>Calca </it>-/- mice. The mice were divided into six groups: WT without UHMWPE particles (Group 1), WT with UHMWPE particles (Group 2), <it>Calca </it>-/- mice without UHMWPE particles (Group 3), <it>Calca </it>-/- mice with UHMWPE particles (Group 4), <it>Calca </it>-/- mice without UHMWPE particles and calcitonin substitution (Group 5), and <it>Calca </it>-/- mice with UHMWPE particle implantation and calcitonin substitution (Group 6). Analytes were extracted from serum and urine. Bone resorption was measured by bone histomorphometry. The number of osteoclasts was determined by counting the tartrate-resistant acid phosphatase (TRACP) + cells.</p> <p>Results</p> <p>Bone resorption was significantly increased in <it>Calca </it>-/- mice compared with their corresponding WT. The eroded surface in <it>Calca </it>-/- mice with particle implantation was reduced by 20.6% after CT substitution. Osteoclast numbers were significantly increased in <it>Calca </it>-/- mice after particle implantation. Serum OPG (osteoprotegerin) increased significantly after CT substitution.</p> <p>Conclusions</p> <p>As anticipated, <it>Calca </it>-/- mice show extensive osteolysis compared with wild-type mice, and CT substitution reduces particle-induced osteolysis.</p

    Osteoarthitis of Leptin-Deficient ob/ob Mice in Response to Biomechanical Loading in Micro-CT

    No full text
    Objective: Mechanotransduction is the mechanism that due to reacting chondrocytes on biomechanical loading of body mass. Higher biomechanical loading lead to increased degeneration of chondrocytes, whereas moderate loading is protecting. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin and with or without osteoarthritis. Materials and methods: 40 C57BL/ 6J ob/ob-mice in the age of 20 weeks have been devided into two groups with an ad-libitum-diet and with reduced diet. The hip- and knee-joints have been examinated in micro-CT-scan and histomorphologically. Results: Animals with an ad-libitum-diet were found to increase body weight significantly at the age of six weeks in comparison with lean mice. At the age of twenty weeks the obese mice were almost twice as heavy as the lean mice. Significant statistical differences are shown between the two groups for body weight and bone mineral density. Examination of trabecular bone in micro-CT revealed that the only statistically significant difference between the two groups was the trabecular number for the proximal femur. High weight-bearing insignificantly improved all trabecular bone parameters in the obese mice. Correlation was found between trabecular number and bone mineral density on the one hand and body weight on the other hand. The correlation between body weight and osteoarthritis shows a significant increase in grade of osteoarthritis as body weight increases in hip-joint and knee-joint but not in osteoarthritis-positive (OP) versus osteoarthritis-negative (ON) mices. The correlation of the hip-joint between micro-CT data and body weight shows an increase in these data as body weight increases in OP mices. The correlation of the hip-joint between micro-CT data and osteoarthritis shows a decrease in these data as osteoarthritis increases in OP mices. The correlation of the knee-joint between micro-CT data and body weight shows differencies between ON and OP mices. The correlation of the knee-joint between micro-CT data and osteoarthritis shows an increase in these data as osteoarthritis increases in OP mices. Conclusion: biomechanical loading led to decreased bone mineral density by a decrease in the number of trabeculae. Trabecular thickness was not increased by biomechanical loading in growing mice. Decreased body weight in leptin-deficient mice protects against bone loss. This finding is consistent with the principle of light-weight construction of bone. Differences in osteoarthritis-positive and osteoarthritis-negative mices show the eventual importance of diet in leptin-deficience. It is not possible to conclude that these results also apply to human beings.</p

    Woodchuck Gamma Interferon Upregulates Major Histocompatibility Complex Class I Transcription but Is Unable To Deplete Woodchuck Hepatitis Virus Replication Intermediates and RNAs in Persistently Infected Woodchuck Primary Hepatocytes

    No full text
    Gamma interferon (IFN-γ) is an important mediator with multiple functions in the host defense against viral infection. IFN-γ, in concert with tumor necrosis factor alpha (TNF-α), leads to a remarkable reduction of intrahepatic replication intermediates and specific mRNAs of hepatitis B virus (HBV) by a noncytolytic mechanism in the transgenic mouse model. Thus, it is rational to evaluate the potential value of IFN-γ for the treatment of chronic HBV infection. In the present study, we expressed recombinant woodchuck IFN-γ (wIFN-γ) in Escherichia coli and mammalian cells. wIFN-γ protected woodchuck cells against infection of murine encephalomyocarditis virus in a species-specific manner. It upregulated the mRNA level of the woodchuck major histocompatibility complex class I (MHC-I) heavy chain in permanent woodchuck WH12/6 cells and regulated differentially the gene expression. However, the level of the replication intermediates and specific RNAs of woodchuck hepatitis virus (WHV) in persistently WHV-infected primary woodchuck hepatocytes did not change despite a treatment with 1,000 U of wIFN-γ per ml or with a combination of wIFN-γ and woodchuck TNF-α. Rather, hepatocytes derived from chronic carriers had an elevated level of the MHC-I heavy-chain mRNAs, most probably due to the exposure to inflammatory cytokines in vivo. Treatment with high doses of wIFN-γ led to an abnormal cell morphology and loss of hepatocytes. Thus, wIFN-γ regulates the gene expression in woodchuck hepatocytes but could not deplete WHV replication intermediates and mRNAs in persistently infected hepatocytes. The cellular response to wIFN-γ may be changed in hepatocytes from chronically WHV-infected woodchucks. It should be clarified in the future whether the continuous exposure of hepatocytes to inflammatory cytokines or the presence of viral proteins leads to changes of the cellular response to wIFN-γ
    corecore