24 research outputs found

    Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics

    Get PDF
    Introduction: In order to assess the significance of drug levels measured in intensive care medicine, clinical and forensic toxicology, as well as for therapeutic drug monitoring, it is essential that a comprehensive collection of data is readily available. Therefore, it makes sense to offer a carefully referenced compilation of therapeutic and toxic plasma concentration ranges, as well as half-lives, of a large number of drugs and other xenobiotics for quick and comprehensive information. Methods: Data have been abstracted from original papers and text books, as well as from previous compilations, and have been completed with data collected in our own forensic and clinical toxicology laboratory. The data presented in the table and corresponding annotations have been developed over the past 20 years and longer. A previous compilation has been completely revised and updated. In addition, more than 170 substances, especially drugs that have been introduced to the market since 2003 as well as illegal drugs, which became known to cause intoxications, were added. All data were carefully referenced and more than 200 new references were included. Moreover, the annotations providing details were completely revised and more than 100 annotations were added. Results: For nearly 1,000 drugs and other xenobiotics, therapeutic ("normal") and, if data were available, toxic and comatose-fatal blood-plasma concentrations and elimination half-lives were compiled in a table. Conclusions: In case of intoxications, the concentration of the ingested substances and/or metabolites in blood plasma better predicts the clinical severity of the case when compared to the assumed amount and time of ingestion. Comparing and contrasting the clinical case against the data provided, including the half-life, may support the decision for or against further intensive care. In addition, the data provided are useful for the therapeutic monitoring of pharmacotherapies, to facilitate the diagnostic assessment and monitoring of acute and chronic intoxications, and to support forensic and clinical expert opinions

    Case report: Acute unintentional carbachol intoxication

    Get PDF
    INTRODUCTION: Intoxications with carbachol, a muscarinic cholinergic receptor agonist are rare. We report an interesting case investigating a (near) fatal poisoning. METHODS: The son of an 84-year-old male discovered a newspaper report stating clinical success with plant extracts in Alzheimer's disease. The mode of action was said to be comparable to that of the synthetic compound 'carbamylcholin'; that is, carbachol. He bought 25 g of carbachol as pure substance in a pharmacy, and the father was administered 400 to 500 mg. Carbachol concentrations in serum and urine on day 1 and 2 of hospital admission were analysed by HPLC-mass spectrometry. RESULTS: Minutes after oral administration, the patient developed nausea, sweating and hypotension, and finally collapsed. Bradycardia, cholinergic symptoms and asystole occurred. Initial cardiopulmonary resuscitation and immediate treatment with adrenaline (epinephrine), atropine and furosemide was successful. On hospital admission, blood pressure of the intubated, bradyarrhythmic patient was 100/65 mmHg. Further signs were hyperhidrosis, hypersalivation, bronchorrhoea, and severe miosis; the electrocardiographic finding was atrio-ventricular dissociation. High doses of atropine (up to 50 mg per 24 hours), adrenaline and dopamine were necessary. The patient was extubated 1 week later. However, increased dyspnoea and bronchospasm necessitated reintubation. Respiratory insufficiency was further worsened by Proteus mirabilis infection and severe bronchoconstriction. One week later, the patient was again extubated and 3 days later was transferred to a peripheral ward. On the next day he died, probably as a result of heart failure. Serum samples from the first and second days contained 3.6 and 1.9 mg/l carbachol, respectively. The corresponding urine concentrations amounted to 374 and 554 mg/l. CONCLUSION: This case started with a media report in a popular newspaper, initiated by published, peer-reviewed research on herbals, and involved human failure in a case history, medical examination and clinical treatment. For the first time, an analytical method for the determination of carbachol in plasma and urine has been developed. The analysed carbachol concentration exceeded the supposed serum level resulting from a therapeutic dose by a factor of 130 to 260. Especially in old patients, intensivists should consider intoxications (with cholinergics) as a cause of acute cardiovascular failure

    The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    Get PDF
    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone

    Analytical findings in a non-fatal intoxication with the synthetic cannabinoid 5F-ADB (5F-MDMB-PINACA): a case report

    No full text
    The case report centres on analytical findings from a spice sample (mixed with tobacco (as a cigarette) for consumption), and its corresponding plasma sample, smoked by a 31-year-old man who was attended by emergency services following collapse. The man was fully conscious and cooperative during initial medical treatment. Suddenly, he suffered a complete loss of self-control, whereupon the police was notified. The man encountered the police officers when exiting the apartment, at which point he threatened them with clenched fists and reached for a plant bucket in order to strike out in the direction of the officers. At the trial, he described himself as confused and as being completely overwhelmed, having lost self-control, suffered a panic attack and just wanted to get out the situation. Furthermore, he stated that he had no recollection of the incident. He feared death due to palpitations, heart pain, dizziness and repetitive anxiety states. Routine systematic as well as extended toxicological analysis of the plasma sample, taken approximately 2 h after the incident, confirmed the use of cannabis and spice. Plasma concentrations of THC, OH-THC and THC-COOH were 8.0 mu g/L, 4.0 mu g/L and 147 mu g/L, respectively. Furthermore, analysis confirmed uptake of 5F-ADB (5F-MDMB-PINACA) via detection of both 5F-ADB and the 5F-ADB N-(5-OH-pentyl) metabolite. The spice sample additionally contained 5F-MDMB-PICA, which was not detected in the plasma sample. A differentiation between a possible co-use and a recent use of cannabis was not possible. In summary, this case once more underlines the health risks of spice use

    Poisoning by addictive substances, laboratory tests, and forensic medical death clarification in the case of poisoning

    No full text
    Clinical-toxicological investigations are very helpful for the detection and assessment of the severity of questionable narcotics intoxications. In some cases, an initial case of clinical poisoning then progresses in the further course to a case of forensic relevance (for example after deliberate poisoning e.g, with knock-out drugs or with intend to commit murder, or in cases of intoxication in connection with a criminal offense). The specifics and problems of the analytical detection of these substances in clinical and forensic cases are explained with regard to the presented narcotic drugs. The information used comes from data from our own examination material and data from the literature. The spectrum of addictive substances has changed significantly in recent years. While established methods of detection are available for alcohol and classic drugs of abuse, new drugs with potential for abuse (such as methylphenidate, pregabalin) or NPS, GHB, GBL, and 4-BD cannot be detected by conventional methods of immunochemistry in combination with chromatographic methods such as GC-MS and HPLC-DAD. An improvement in the measurement equipment for specialised laboratories performing such investigations is therefore required in order to be able to adequately care for patients and to clarify criminal offenses. In the interests of legal certainty, it is important for offenders, in the case of a foreign substance being supplied to a victim, to assume that it can also be proven. In addition, with regard to the reliability of officially stated prevalence data for narcotic drugs in drug-related deaths, greater safety should be sought in the collection of all relevant substances

    Modafinil in Forensic and Clinical Toxicology-Case Reports, Analytics and Literature

    No full text
    Modafinil is used because of its wakefulness-promoting properties for treatment of diseases associated with extreme sleepiness (i.e., narcolepsy). Additionally, it is misused as a cognitive enhancer to increase alertness and to improve concentration. We present modafinil concentrations in serum samples in five cases of our routine work measured by high-performance liquid chromatography coupled with a photo diode array detector after solid-phase extraction. One sample was analyzed for clinical toxicology purposes. The other four were investigated for the police: three cases of driving under the influence of drugs and one case of bodily harm. Sample preparation consisted of solid-phase extraction using Bond Elut (R) C18 columns. Papaverine was used as internal standard. Chromatographic separation was carried out using a Polaris C18-A column in an isocratic run. Wavelengths used for UV-detection were 220 nm for modafinil and 239 nm for the internal standard, respectively. The method was validated with a reduced validation design for rare analytes. A six-point-calibration from 0.5 to 5.0 mg/L, covering the therapeutic range (0.9-3.3 mg/L), was used for quantification. Concentrations in serum were in the range of 1.3 to similar to 34 mg/L (median: 3.6 mg/L; mean: 9.0 mg/L). To our knowledge, there are only few publications concerning the serum concentrations of modafinil in cases of (suspected) misuse, forensic cases or intoxications. In our discussion, the serum concentrations we determined are compared with the levels described in the literature so far

    Swollen Lips After a Night of Partying-An Allergic Reaction to Ecstasy?

    No full text
    Ecstasy (MDMA) is a mood-lifting drug with numerous somatic side effects, for example, dehydration or continuous chewing and biting. We describe the case of a young woman who underwent a forensic medical examination for suspected sexual assault. She claimed to have suffered from a memory lapse, and she had a painful swelling of her lips with a plaque-like coating on her lips and buccal mucosa. The attending physician suspected that these findings might have been caused by strong sucking pressure on her lips within the context of a sexual assault. A toxicological examination of a blood specimen verified that she had been under the influence of an extremely high dose of ecstasy (1.456 mg/L MDMA and 0.0213 mg/L MDA). Pursuant to the forensic medical assessment, the described findings on her lips, and buccal mucosa were interpreted as an allergic and mechanical reaction (through continuous chewing and biting) to ecstasy

    Alcohol Biomarkers in Clinical and Forensic Contexts

    No full text
    Background: Biomarkers of alcohol consumption are important not only in forensic contexts, e.g., in child custody proceedings or as documentation of alcohol abstinence after temporary confiscation of a driver's license. They are increasingly being used in clinical medicine as well for verification of abstinence or to rule out the harmful use of alcohol. Methods: This review is based on pertinent publications that were retrieved by a selective literature search in PubMed concerning the direct and indirect alcohol markers discussed here, as well as on the authors' experience in laboratory analysis and clinical medicine. Results: Alongside the direct demonstration of ethanol, the available markers of alcohol consumption include the classic indirect markers carbohydrate-deficient transferrin (CDT), gamma-glutamyltransferase (GGT), and mean corpuscular volume (MCV) as well as direct alcohol markers such as ethyl glucuronide (EtG) and ethyl sulfate (EtS) in serum and urine and EtG and fatty acid ethyl esters (FAEE) in hair. Phosphatidylethanol (PEth) is a promising parameter that complements the existing spectrum of tests with high specificity (48-89%) and sensitivity (88-100%). In routine clinical practice, the demonstration of positive alcohol markers often leads patients to admit previously denied alcohol use. This makes it possible to motivate the patient to undergo treatment for alcoholism. Conclusion: The available alcohol biomarkers vary in sensitivity and specificity with respect to the time period over which they indicate alcohol use and the minimum extent of alcohol use that they can detect. The appropriate marker or combination of markers should be chosen in each case according to the particular question that is to be answered by laboratory analysis
    corecore