107 research outputs found

    Theoretical transition frequencies beyond 0.1 ppb accuracy in H2+_2^+, HD+^+, and antiprotonic helium

    Full text link
    We present improved theoretical calculations of transition frequencies for the fundamental transitions (L ⁣= ⁣0,v ⁣= ⁣1)(L ⁣= ⁣0,v ⁣= ⁣0)(L\!=\!0,v\!=\!1)\to(L'\!=\!0,v'\!=\!0) in the hydrogen molecular ions H2+_2^+ and HD+^+ with a relative uncertainty 410114\cdot10^{-11} and for the two-photon transitions in the antiprotonic helium atom with a relative uncertainty 101010^{-10}. To do that, the one-loop self-energy correction of order α(Zα)6\alpha(Z\alpha)^6 is derived in the two Coulomb center approximation, and numerically evaluated in the case of the aforementioned transitions. The final results also include a complete set of other spin-independent corrections of order mα7m\alpha^7. The leading order corrections of α2ln3(Zα)2(Zα)6\alpha^2\ln^3(Z\alpha)^{-2}(Z\alpha)^6 are also considered that allows to estimate a magnitude of yet uncalculated contributions.Comment: 10 pages, 2 figure, to be submitted to PR

    A new vibrational level of the H2+_2^+ molecular ion

    Get PDF
    A new state of the H2+_2^+ molecular ion with binding energy of 1.09×109\times10^{-9} a.u. below the first dissociation limit is predicted, using highly accurate numerical nonrelativistic quantum calculations. It is the first L=0 excited state, antisymmetric with respect to the exchange of the two protons. It manifests itself as a huge p-H scattering length of a=750±5a=750\pm 5 Bohr radii.Comment: 6 pages + 3 figure

    One-loop vacuum polarization at mα7m\alpha^7 order for the two center problem

    Full text link
    We present calculations of the one-loop vacuum polarization contribution (Uehling potential) for the two-center problem in the NRQED formalism. The cases of hydrogen molecular ions (Z1=Z2=1Z_1=Z_2=1) as well as antiprotonic helium (Z1=2Z_1=2, Z2=1Z_2=-1) are considered. Numerical results of the vacuum polarization contribution at mα7m\alpha^7 order for the fundamental transitions (v=0,L=0)(v=1,L=0)(v=0,L=0)\to(v'=1,L'=0) in H2+_2^+ and HD+^+ are presented.Comment: 6 pages, 2 figues, submitted to PR

    Hydrogen molecular ions for improved determination of fundamental constants

    Full text link
    The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions H + 2 and HD + for an independent determination of several fundamental constants is analyzed. While these molecules had been proposed for metrology of nuclear-to-electron mass ratios, we show that they are also sensitive to the radii of the proton and deuteron and to the Rydberg constant at the level of the current discrepancies colloquially known as the proton size puzzle. The required level of accuracy, in the 10 --12 range, can be reached both by experiments, using Doppler-free two-photon spectroscopy schemes, and by theoretical predictions. It is shown how the measurement of several well-chosen rovibrational transitions may shed new light on the proton-radius puzzle, provide an alternative accurate determination of the Rydberg constant, and yield new values of the proton-to-electron and deuteron-to-proton mass ratios with one order of magnitude higher precision

    Proton-electron mass ratio from HD+^+ revisited

    Full text link
    We present a new derivation of the proton-electron mass ratio from the hydrogen molecular ion, HD+^+. The derivation entails the adjustment of the mass ratio in highly precise theory so as to reproduce accurately measured ro-vibrational frequencies. This work is motivated by recent improvements of the theory, as well as the more accurate value of the electron mass in the recently published CODATA-14 set of fundamental constants, which justifies using it as input data in the adjustment, rather than the proton mass value as done in previous works. This leads to significantly different sensitivity coefficients and, consequently, a different value and larger uncertainty margin of the proton-electron mass ratio as obtained from HD+^+

    Precision Spectroscopy of Molecular Hydrogen Ions: Towards Frequency Metrology of Particle Masses

    Get PDF
    We describe the current status of high-precision ab initio calculations of the spectra of molecular hydrogen ions (H_2^+ and HD^+) and of two experiments for vibrational spectroscopy. The perspectives for a comparison between theory and experiment at a level of 1 ppb are considered.Comment: 26 pages, 13 figures, 1 table, to appear in "Precision Physics of Simple Atomic Systems", Lecture Notes in Physics, Springer, 200

    High accuracy results for the energy levels of the molecular ions H2+, D2+ and HD+, up to J=2

    Get PDF
    We present a nonrelativistic calculation of the rotation-vibration levels of the molecular ions H2+, D2+ and HD+, relying on the diagonalization of the exact three-body Hamiltonian. The J=2 levels are obtained with a very high accuracy of 10^{-14} a.u. (for most levels) representing an improvement by five orders of magnitude over previous calculations. The accuracy is also improved for the J=1 levels of H2+ and D2+ with respect to earlier works. Moreover, we have computed the sensitivities of the energy levels with respect to the mass ratios, allowing these levels to be used for metrological purposes.Comment: 11 page

    Why three-body physics do not solve the proton radius puzzle

    Full text link
    The possible involvement of weakly bound three-body systems in the muonic hydrogen spectroscopy experiment [1], which could resolve the current discrepancy between determinations of the proton radius, is investigated. Using variational calculations with complex coordinate rotation, it is shown that the pμep\mu e ion, which was recently proposed as a possible candidate [2], has no resonant states in the energy region of interest. QED level shifts are included phenomenologically by including a Yukawa potential in the three-body Coulomb Hamiltonian before diagonalization. It is also shown that the ppμpp\mu molecular ion cannot play any role in the observed line

    Polarization squeezing with cold atoms

    Full text link
    We study the interaction of a nearly resonant linearly polarized laser beam with a cloud of cold cesium atoms in a high finesse optical cavity. We show theoretically and experimentally that the cross-Kerr effect due to the saturation of the optical transition produces quadrature squeezing on both the mean field and the orthogonally polarized vacuum mode. An interpretation of this vacuum squeezing as polarization squeezing is given and a method for measuring quantum Stokes parameters for weak beams via a local oscillator is developed

    Atomic physics: An almost lightless laser

    Get PDF
    Lasers are often described in terms of a light field circulating in an optical resonator system. Now a laser has been demonstrated in which the field resides primarily in the atomic medium that is used to generate the light
    corecore