16 research outputs found

    Reduced expression of SK Ca

    No full text

    Twenty-four-hour exposure to altered blood flow modifies endothelial Ca2+-activated K+ channels in rat mesenteric arteries

    No full text
    We tested the hypothesis that changes in arterial blood flow modify the function of endothelial Ca2+-activated K+ channels [calcium-activated K+ channel (K-Ca), small-conductance calcium-activated K+ channel (SK3), and intermediate calcium-activated K+ channel (IK1)] before arterial structural remodeling. In rats, mesenteric arteries were exposed to increased [+90%, high flow (HF)] or reduced blood flow [-90%, low flow (LF)] and analyzed 24 h later. There were no detectable changes in arterial structure or in expression level of endothelial nitric-oxide synthase, SK3, or IK1. Arterial relaxing responses to acetylcholine and 3-oxime-6,7-dichlore-1H-indole-2,3-dione (NS309; activator of SK3 and IK1) were measured in the absence and presence of endothelium, NO, and prostanoid blockers, and 6,12,19,20,25,26-hexahydro-5,27: 13,18: 21,24-trietheno-11,7-metheno-7H-dibenzo [b,n] [1,5,12,16]tetraazacyclotricosine-5,13-diium dibromide (UCL 1684; inhibitor of SK3) or 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34; inhibitor of IK1). In LF arteries, endothelium-dependent relaxation was markedly reduced, due to a reduction in the endothelium-derived hyperpolarizing factor (EDHF) response. In HF arteries, the balance between the NO/prostanoid versus EDHF response was unaltered. However, the contribution of IK1 to the EDHF response was enhanced, as indicated by a larger effect of TRAM-34 and a larger residual NS309-induced relaxation in the presence of UCL 1684. Reduction of blood flow selectively blunts EDHF relaxation in resistance arteries through inhibition of the function of K-Ca channels. An increase in blood flow leads to a more prominent role of IK1 channels in this relaxation

    Interleukin-10 inhibits the in vivo and in vitro adverse effects of TNF-α on the endothelium of murine aorta

    No full text
    TNF-α is a proinflammatory cytokine and is an important mediator of maternal endothelial dysfunction leading to preeclampsia. In this study, we tested whether IL-10 protects against TNF-α-induced endothelial dysfunction in murine aorta. In in vitro experiments, aortic rings of C57BL/6 female mice were incubated in Dulbecco's modified Eagle's medium in the presence of either vehicle (distilled H2O), TNF-α (4 nmol/l), or recombinant mouse IL-10 (300 ng/ml) or in the presence of both TNF-α and IL-10 for 22 h at 37°C. In in vivo experiments C57BL6/IL-10 knockout female mice were treated with saline or TNF-α (220 ng·kg−1·day−1) for 14 days. Aortic rings were isolated from in vitro and in vivo experiments and mounted in a wire myograph (Danish Myotech) and stretched to a tension of 5 mN. Endothelium-dependent relaxation was assessed by constructing cumulative concentration-response curves to acetylcholine (ACh, 0.001–10 μmol/l) during phenylephrine (10 μmol/l)-induced contraction. As a result, overnight exposure of aortic rings to TNF-α resulted in significant blunted maximal relaxing responses (Emax) to ACh compared with untreated rings (22 ± 4 vs. 82 ± 3%, respectively). IL-10 knockout mice treated with TNF-α showed significant impairment in ACh responses (Emax) compared with C57BL/6 mice treated with TNF-α (51 ± 3 vs. 72 ± 3%, respectively). Western blot analysis showed that endothelial nitric oxide synthase (eNOS) expression was reduced by TNF-α in in vitro and in vivo experiments, whereas IL-10 restored the eNOS expression. In conclusion, the anti-inflammatory cytokine IL-10 prevents impairment in endothelium-dependent vasorelaxation caused by TNF-α by protecting eNOS expression

    Acute O

    No full text
    corecore