32 research outputs found

    Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network

    Get PDF
    As in other eukaryotes, cell division in plants is highly conserved and regulated by cyclin-dependent kinases (CDKs) that are themselves predominantly regulated at the posttranscriptional level by their association with proteins such as cyclins. Although over the last years the knowledge of the plant cell cycle has considerably increased, little is known on the assembly and regulation of the different CDK complexes. To map protein-protein interactions between core cell cycle proteins of Arabidopsis thaliana, a binary protein-protein interactome network was generated using two complementary high-throughput interaction assays, yeast two-hybrid and bimolecular fluorescence complementation. Pairwise interactions among 58 core cell cycle proteins were tested, resulting in 357 interactions, of which 293 have not been reported before. Integration of the binary interaction results with cell cycle phase-dependent expression information and localization data allowed the construction of a dynamic interaction network. The obtained interaction map constitutes a framework for further in-depth analysis of the cell cycle machinery

    The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature vascular differentiation during replication stress

    Get PDF
    A sessile lifestyle forces plants to respond promptly to factors that affect their genomic integrity. Therefore, plants have developed checkpoint mechanisms to arrest cell cycle progression upon the occurrence of DNA stress, allowing the DNA to be repaired before onset of division. Previously, the WEE1 kinase had been demonstrated to be essential for delaying progression through the cell cycle in the presence of replication-inhibitory drugs, such as hydroxyurea. To understand the severe growth arrest of WEE1-deficient plants treated with hydroxyurea, a transcriptomics analysis was performed, indicating prolonged S-phase duration. A role for WEE1 during S phase was substantiated by its specific accumulation in replicating nuclei that suffered from DNA stress. Besides an extended replication phase, WEE1 knockout plants accumulated dead cells that were associated with premature vascular differentiation. Correspondingly, plants without functional WEE1 ectopically expressed the vascular differentiation marker VND7, and their vascular development was aberrant. We conclude that the growth arrest of WEE1-deficient plants is due to an extended cell cycle duration in combination with a premature onset of vascular cell differentiation. The latter implies that the plant WEE1 kinase acquired an indirect developmental function that is important for meristem maintenance upon replication stress

    Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome

    Get PDF
    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2; 3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate

    Genome-wide screening for cis-regulatory variation using a classical diallel crossing scheme

    Get PDF
    Large-scale screening studies carried out to date for genetic variants that affect gene regulation are generally limited to descriptions of differences in allele-specific expression (ASE) detected in vivo. Allele-specific differences in gene expression provide evidence for a model whereby cis-acting genetic variation results in differential expression between alleles. Such gene surveys for regulatory variation are a first step in identifying the specific nucleotide changes that govern gene expression differences, but they leave the underlying mechanisms unexplored. Here, we propose a quantitative genetics approach to perform a genome-wide analysis of ASE differences (GASED). The GASED approach is based on a diallel design that is often used in plant breeding programs to estimate general combining abilities (GCA) of specific inbred lines and to identify high-yielding hybrid combinations of parents based on their specific combining abilities (SCAs). In a context of gene expression, the values of GCA and SCA parameters allow cis- and trans-regulatory changes to be distinguished and imbalances in gene expression to be ascribed to cis-regulatory variation. With this approach, a total of 715 genes could be identified that are likely to carry allelic polymorphisms responsible for at least a 1.5-fold allelic expression difference in a total of 10 diploid Arabidopsis thaliana hybrids. The major strength of the GASED approach, compared to other ASE detection methods, is that it is not restricted to genes with allelic transcript variants. Although a false-positive rate of 9/41 was observed, the GASED approach is a valuable pre-screening method that can accelerate systematic surveys of naturally occurring cis-regulatory variation among inbred lines for laboratory species, such as Arabidopsis, mouse, rat and fruitfly, and economically important crop species, such as corn

    The cyclin CYCA3;4 is a postprophase target of the APC/CCCS52A2 E3-ligase controlling formative cell divisions in Arabidopsis

    Get PDF
    The Anaphase Promoting Complex/Cyclosome (APC/C) controls unidirectional progression through the cell cycle by marking key cell cycle proteins for proteasomal turnover. Its activity is temporally regulated by the docking of different activating subunits, known in plants as CELL DIVISION PROTEIN 20 (CDC20) and CELL CYCLE SWITCH 52 (CCS52). Despite the importance of the APC/C during cell proliferation, the number of identified targets in the plant cell cycle is limited. Here, we used the growth and meristem phenotypes of Arabidopsis thaliana CCS52A2-deficient plants in a suppressor mutagenesis screen to identify APC/CCCS52A2 substrates or regulators, resulting in the identification of a mutant cyclin CYCA3;4 allele. CYCA3;4 deficiency partially rescues the ccs52a2-1 phenotypes, whereas increased CYCA3;4 levels enhance the ccs52a2-1 phenotypes. Furthermore, whereas CYCA3;4 proteins are promptly broken down after prophase in wild-type plants, they remain present in later stages of mitosis in ccs52a2-1 mutant plants, marking them as APC/CCCS52A2 substrates. Strikingly, increased CYCA3;4 levels result in aberrant root meristem and stomatal divisions, mimicking phenotypes of plants with reduced RETINOBLASTOMA-RELATED PROTEIN 1 (RBR1) activity. Correspondingly, RBR1 hyperphosphorylation was observed in CYCA3;4 gain-of-function plants. Our data thus demonstrate that an inability to timely destroy CYCA3;4 contributes to disorganized formative divisions, possibly in part caused by the inactivation of RBR1

    AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum)

    Get PDF
    Cell division in photosynthetic organisms is tightly regulated by light. Although the light dependency of the onset of the cell cycle has been well characterized in various phototrophs, little is known about the cellular signaling cascades connecting light perception to cell cycle activation and progression. Here, we demonstrate that diatom-specific cyclin 2 (dsCYC2) in Phaeodactylum tricornutum displays a transcriptional peak within 15 min after light exposure, long before the onset of cell division. The product of dsCYC2 binds to the cyclin-dependent kinase CDKA1 and can complement G1 cyclin-deficient yeast. Consistent with the role of dsCYC2 in controlling a G1-to-S light-dependent cell cycle checkpoint, dsCYC2 silencing decreases the rate of cell division in diatoms exposed to light-dark cycles but not to constant light. Transcriptional induction of dsCYC2 is triggered by blue light in a fluence rate-dependent manner. Consistent with this, dsCYC2 is a transcriptional target of the blue light sensor AUREOCHROME1a, which functions synergistically with the basic leucine zipper (bZIP) transcription factor bZIP10 to induce dsCYC2 transcription. The functional characterization of a cyclin whose transcription is controlled by light and whose activity connects light signaling to cell cycle progression contributes significantly to our understanding of the molecular mechanisms underlying light-dependent cell cycle onset in diatoms
    corecore