2 research outputs found

    Sr-Nd-Pb isotopic systematics of crustal rocks from the western Betics (S. Spain): Implications for crustal recycling in the lithospheric mantle beneath the westernmost Mediterranean

    No full text
    International audienceWe present new Sr-Nd-Pb isotope data of the western Alpujárride metamorphic basement and the pre-Miocene Flysch sediments of the Betic Cordillera (southern Spain). Nd model ages are consistent with an increasing detrital input from the Alborán domain to the Flysch Trough in the western Mediterranean during the late Oligocene. The Alpujárride metamorphic crustal rocks derived from Archean-Paleoproterozoic terranes located along the northern margin of Gondwana in the Neoproterozoic. The heterogeneous isotopic signatures of the Alpujárride units indicate that they have different sedimentary protoliths and underwent contrasted Variscan and pre-Variscan tectono-magmatic evolutions. Melts/fluids derived from the western Alpujárride gneisses contaminated the mantle source of the Ronda high-Mg pyroxenite dykes, implying that the Alpujárride lower crust underthrusted the subcontinental lithospheric mantle of the Alborán domain generating subduction-like magmatism in the late Oligocene. The western Alpujárride upper crust is involved in the Neogene volcanism of the Alborán Sea basin, but only contaminated some LREE-enriched calc-alkaline lavas erupted along the continental margins. On the other hand, tholeiitic lavas in the center of the basin show no isotopic evidence of crustal assimilation. This indicates that most of the crust in the central Alborán Sea accreted by Miocene tholeiitic magmatism and that Alpujárride lower crust is absent and likely foundered close to the continental margins of the basin

    Refertilization Processes in the Subcontinental Lithospheric Mantle: the Record of the Beni Bousera Orogenic Peridotite (Rif Belt, Northern Morocco)

    No full text
    International audienceCorrelations between major and minor transition elements in tectonically emplaced orogenic peridotites have been ascribed to variable degrees of melt extraction and melt–rock reaction processes, leading to depletion or refertilization. To elucidate how such processes are recorded in the subcontinental lithospheric mantle, we processed a large geochemical dataset for peridotites from the four tectono-metamorphic domains of the Beni Bousera orogenic massif (Rif Belt, northern Morocco). Our study reveals that variations in bulk-rock major and minor elements, Mg-number and modal mineralogy of lherzolites, as well as their clinopyroxene trace element compositions, are inconsistent with simple partial melting and mainly resulted from different reactions between melts and depleted peridotites. Up to 30% melting at < 3 GPa and cryptic metasomatism can account for the geochemical variations of most harzburgites. In Grt–Sp mylonites, melting and melt–rock reactions are masked by tectonic mixing with garnet pyroxenites and subsolidus re-equilibration. In the rest of the massif, lherzolites were mostly produced by refertilization of a refractory protolith (Mg-number ∼ 91, Ol ∼ 70%, Cpx/Opx = 0·4) via two distinct near-solidus, melt–rock reactions: (1) clinopyroxene and orthopyroxene precipitation and olivine consumption at melt/rock ratios <0·75 and variable mass ratio between crystallized minerals and infiltrated melt (R), which are recorded fairly homogeneously throughout the massif; (2) dissolution of orthopyroxene and precipitation of clinopyroxene and olivine at melt/rock ratios ≤1 and R = 0·2–0·3, which affected mainly the Ariègite–Seiland and Seiland domains. The distribution of secondary lherzolites in the massif suggests that the first refertilization reaction occurred prior to the differentiation of the Beni Bousera mantle section into petro-structural zones, whereas the second reaction was associated with the development of the tectono-metamorphic domains. Our data support a secondary, refertilization-related origin for most lherzolites in orogenic peridotite massifs
    corecore