4 research outputs found

    Green Synthesis of Zinc Oxide Nanostructures

    Get PDF
    ZnO-based nanomaterials have been proven to be of great use for several leading applications since the beginning of nanoscience due to the abundance of zinc element and the relatively easy conversion of its oxide to nanostructures. Nowadays, ZnO as nanoparticles, nanowires, nanofibers as well as plenty of other sophisticated nanostructures takes place among the pioneer nanomaterials employed in the photovoltaic systems, fuel cells, and biomedical fields. Nevertheless, optimizing energy consumption and being eco-friendly are the challenging requirements that are still to be overcome for their synthesis. Green chemistry has been strongly presented recently in the scientific arena as an adequate potential alternative; worldwide investigations have been held on subjects involving bacteria, fungus, or algae-based synthesis as efficient options, and some of the intriguing scientific findings on this subject are reported hereafter

    Enhanced bactericidal and photocatalytic activities of ZnO nanostructures by changing the cooling route

    Get PDF
    We report on a simple synthesis of ZnO nanowires by calcination of zinc acetate. The effect of calcination temperature and cooling route on the antibacterial and photocatalytic properties is demonstrated by varying the size and surface area of the nanowires. The decrease of the calcination temperature followed by a rapid cooling procedure leads to a smaller size and larger surface area of the nanowires. ZnO nanowires are found to be effective against the growth of E. coli at the microgram level. In addition, the photocatalytic activity of the synthesized ZnO nanowires is demonstrated by the successful degradation of the organic dye methylene blue

    Sacrificial zinc oxide strategy-enhanced mesoporosity in MIL-53-derived iron–carbon composite for methylene blue adsorption

    No full text
    MOF-derived carbon-based materials have attracted widespread attention due to their relatively large surface area, morphology, and their stability in water. Considering these advantages, these materials present themselves as excellent adsorbents. In this work, a novel method was designed for the fabrication of a nano zero-valent-iron (nZVI) carbon composite. The utilization of zinc oxide nanorods (ZnONRs) in the role of sacrificial consumable nuclei for the synthesis of MIL-53 sacrificial zinc oxide nanorods (MIL-53-SNR) and the subsequent pyrolysis at 700 degrees C in the inert atmosphere led to a graphitic-supported nZVI material (Fe-C-SNR). Fe-C-SNR was compared with a commercial zinc oxide bulk (MIL-53-SB) and with a pristine MIL-53. By virtue of the ZnONRs, Fe-C-SNR exhibited a greatly improved mesoporous structure. Consequently, the pyrolyzed materials were applied as adsorbents for methylene blue. Fe-C-SNR's performance increased to more than double of the pyrolyzed MIL-53 (Fe-C), with a remarkably fast adsorption time (10 min) for a concentration of 10 mg L-1 with only 200 mg L-1 adsorbent required. This functional composite also displayed exceptional recyclability; after ten complete cycles, Fe-C-SNR was still capable of completely adsorbing the methylene blue. The utilization of ZnONRs proves itself advantageous and could further be extended to other MOFs for a wide range of applications
    corecore