72 research outputs found

    Leaf density and chemical composition explain variation in leaf mass area with spectral composition among 11 widespread forbs in a common garden

    Get PDF
    Abstract Leaf mass per area (LMA) is a key leaf functional trait correlated with plant strategies dictating morphology, physiology, and biochemistry. Although sunlight is generally accepted as a dominant factor driving LMA, the contribution of each spectral region of sunlight in shaping LMA is poorly understood. In the present study, we grew 11 widespread forb species in a common garden and dissected the traits underpinning differences in LMA, such as its morphological components (leaf density (LD), and leaf thickness (LT)), macroelement and metabolite composition under five spectral-attenuation treatments: (1) transmitting c. 95% of the whole solar spectrum (>?280 nm), (2) attenuating ultraviolet-B radiation (UV-B), (3) attenuating both UV-A and UV-B radiation, (4) attenuating UV radiation and blue light, (5) attenuating UV radiation, blue, and green light. We found that LMA, LD, and chemical traits varied significantly across species depending on spectral treatments. LMA was significantly increased by UV-B radiation and green light, while LD was increased by UV-A but decreased by blue light. LMA positively correlated with LD across treatments but was only weakly related to LT, suggesting that LD was a better determinate of LMA for this specific treatment. Regarding leaf elemental and metabolite composition, carbon, nitrogen, and total phenolics were all positively correlated with LMA, whereas lignin, non-structural carbohydrates, and soluble sugars had negative relationships with LMA. These trends imply a tradeoff between biomass allocation to structural and metabolically functional components. In conclusion, sunlight can spectrally drive LMA mainly through modifying functional and structural support.Peer reviewe

    Biomass Allocation and Chemical Defense in Defoliated Seedling of Quercus serrata with Respect to Carbon-Nitrogen Balance

    Get PDF
    東北大学金沢大学大学院自然科学研究科Scedule:17-18 March 2003, Vemue: Kanazawa, Japan, Kanazawa Citymonde Hotel, Project Leader : Hayakawa, Kazuichi, Symposium Secretariat: XO kamata, Naoto, Edited by:Kamata, Naoto

    Limitation in the Photosynthetic Acclimation to High Temperature in Canopy Leaves of Quercus serrata

    Get PDF
    As temperature dependence in many biological processes is generally a bell-shaped curve, warming may be benefitial at cooler climate but deterimental at warmer climate. Although warming responses are expected to vary between different temperature regimes even in the same species, such variations are poorly understood. We established open-top canopy chambers, in which average daytime leaf temperature was increased by ca. 1.0°C, at the canopy top of Quercus serrata in a deciduous forest in high (HL) and low (LL) latitude sites and studied temperature dependence of photosynthesis in the leaves across seasons. In control leaves, photosynthetic rates were higher in LL than in HL. Reponse to warming was different between HL and LL; an increase in growth temperature increased photosynthetic rates at higher leaf temperatures in HL but decreased in LL. Lower photosynthetic rate in the warming treatment in LL was partly explained by lower leaf mass per area and leaf nitrogen content per unit leaf area. Optimal temperature that maximizes photosynthetic rate (Topt) linearly increased with increasing growth temperature (GT) in HL, whereas it was saturating against GT in LL, suggesting that Topt in Q. serrata has an upper limit. The variation in Topt was explained by the activation energy of the maximum carboxylation rate (EaV). Our results suggest an upper limit in temperature acclimation of photosynthesis, which may be one of the determinants of southern limitation of the distribution
    corecore