14 research outputs found

    ALS-FTD関連タンパク質のFUSは、RNA-helicaseであるDHX30の構造障害を介して、ミトコンドリア機能異常や細胞質内凝集体形成を誘導する

    Get PDF
    京都大学新制・課程博士博士(医学)甲第24319号医博第4913号新制||医||1062(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 林 康紀, 教授 渡邉 大, 教授 渡邊 直樹学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    A novel A792D mutation in the CSF1R gene causes hereditary diffuse leukoencephalopathy with axonal spheroids characterized by slow progression

    Get PDF
    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal dominant white matter disease that causes adult-onset cognitive impairment. The clinical manifestations are a variable combination of personality and behavioral changes, cognitive decline, parkinsonism, spasticity, and epilepsy. In 2012, mutations in the gene encoding colony stimulating factor 1 receptor (CSF1R) were identified as the cause of HDLS. As the numbers of reported mutations are limited, the understanding of whole pathogenesis needs accumulation of disease-causing mutations with detailed clinical descriptions. We describe a Japanese family with autosomal dominant adult-onset cognitive impairment and characteristic white matter lesions. Genetic testing revealed a novel p.A792D mutation in the tyrosine kinase domain of CSF1R in two affected family members. The symptom profile of the present cases mostly matched the previously reported cases, with the notable exceptions of late-onset and long disease duration

    Failure of DNA double-strand break repair by tau mediates Alzheimer’s disease pathology in vitro

    Get PDF
    DNA double-strand break (DSB) is the most severe form of DNA damage and accumulates with age, in which cytoskeletal proteins are polymerized to repair DSB in dividing cells. Since tau is a microtubule-associated protein, we investigate whether DSB is involved in tau pathologies in Alzheimer’s disease (AD). First, immunohistochemistry reveals the frequent coexistence of DSB and phosphorylated tau in the cortex of AD patients. In vitro studies using primary mouse cortical neurons show that non-p-tau accumulates perinuclearly together with the tubulin after DSB induction with etoposide, followed by the accumulation of phosphorylated tau. Moreover, the knockdown of endogenous tau exacerbates DSB in neurons, suggesting the protective role of tau on DNA repair. Interestingly, synergistic exposure of neurons to microtubule disassembly and the DSB strikingly augments aberrant p-tau aggregation and apoptosis. These data suggest that DSB plays a pivotal role in AD-tau pathology and that the failure of DSB repair leads to tauopathy

    Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals.

    Get PDF
    Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is implicated in the pathogenesis of sporadic and certain familial forms of amyotrophic lateral sclerosis (ALS), suggesting elimination of TDP-43 aggregates as a possible therapeutic strategy. Here we generated and investigated a single-chain variable fragment (scFv) derived from the 3B12A monoclonal antibody (MAb) that recognises D247 of the TDP-43 nuclear export signal, an epitope masked in the physiological state. In transfected HEK293A cells, 3B12A scFv recapitulated the affinity of the full-length MAb to mislocalised TDP-43 with a defective nuclear localising signal and to a TDP-43 inclusion mimic with cysteine-to-serine substitution at RRM1. Moreover, 3B12A scFv accelerated proteasome-mediated degradation of aggregated TDP-43, likely due to an endogenous PEST-like proteolytic signal sequence in the VH domain CDR2 region. Addition of the chaperone-mediated autophagy (CMA)-related signal to 3B12A scFv induced HSP70 transcription, further enhancing TDP-43 aggregate clearance and cell viability. The 3B12A scFv also reduced TDP-43 aggregates in embryonic mouse brain following in utero electroporation while causing no overt postnatal brain pathology or developmental anomalies. These results suggest that a misfolding-specific intrabody prone to synergistic proteolysis by proteasomal and autophagic pathways is a promising strategy for mitigation of TDP-43 proteinopathy in ALS.筋萎縮性側索硬化症の異常凝集体を除去する治療抗体の開発に成功-ALS の根治治療への道を開く -滋賀医科大学プレスリリース. 2018-05-3

    Conformational change of RNA-helicase DHX30 by ALS/FTD-linked FUS induces mitochondrial dysfunction and cytosolic aggregates.

    Get PDF
    Genetic mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). Although mitochondrial dysfunction and stress granule have been crucially implicated in FUS proteinopathy, the molecular basis remains unclear. Here, we show that DHX30, a component of mitochondrial RNA granules required for mitochondrial ribosome assembly, interacts with FUS, and plays a crucial role in ALS-FUS. WT FUS did not affect mitochondrial localization of DHX30, but the mutant FUS lowered the signal of mitochondrial DHX30 and promoted the colocalization of cytosolic FUS aggregates and stress granule markers. The immunohistochemistry of the spinal cord from an ALS-FUS patient also confirmed the colocalization, and the immunoelectron microscope demonstrated decreased mitochondrial DHX30 signal in the spinal motor neurons. Subcellular fractionation by the detergent-solubility and density-gradient ultracentrifugation revealed that mutant FUS also promoted cytosolic mislocalization of DHX30 and aggregate formation. Interestingly, the mutant FUS disrupted the DHX30 conformation with aberrant disulfide formation, leading to impaired mitochondrial translation. Moreover, blue-native gel electrophoresis revealed an OXPHOS assembly defect caused by the FUS mutant, which was similar to that caused by DHX30 knockdown. Collectively, our study proposes DHX30 as a pivotal molecule in which disulfide-mediated conformational change mediates mitochondrial dysfunction and cytosolic aggregate formation in ALS-FUS

    Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals

    Get PDF
    筋萎縮性側索硬化症の異常凝集体を除去する治療抗体の開発に成功 --ALSの根治治療への道を開く--. 京都大学プレスリリース. 2018-06-20.Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is implicated in the pathogenesis of sporadic and certain familial forms of amyotrophic lateral sclerosis (ALS), suggesting elimination of TDP-43 aggregates as a possible therapeutic strategy. Here we generated and investigated a single-chain variable fragment (scFv) derived from the 3B12A monoclonal antibody (MAb) that recognises D247 of the TDP-43 nuclear export signal, an epitope masked in the physiological state. In transfected HEK293A cells, 3B12A scFv recapitulated the affinity of the full-length MAb to mislocalised TDP-43 with a defective nuclear localising signal and to a TDP-43 inclusion mimic with cysteine-to-serine substitution at RRM1. Moreover, 3B12A scFv accelerated proteasome-mediated degradation of aggregated TDP-43, likely due to an endogenous PEST-like proteolytic signal sequence in the VH domain CDR2 region. Addition of the chaperone-mediated autophagy (CMA)-related signal to 3B12A scFv induced HSP70 transcription, further enhancing TDP-43 aggregate clearance and cell viability. The 3B12A scFv also reduced TDP-43 aggregates in embryonic mouse brain following in utero electroporation while causing no overt postnatal brain pathology or developmental anomalies. These results suggest that a misfolding-specific intrabody prone to synergistic proteolysis by proteasomal and autophagic pathways is a promising strategy for mitigation of TDP-43 proteinopathy in ALS

    Failure of DNA double-strand break repair by tau mediates Alzheimer\u27s disease pathology in vitro

    Get PDF
    DNA double-strand break (DSB) is the most severe form of DNA damage and accumulates with age, in which cytoskeletal proteins are polymerized to repair DSB in dividing cells. Since tau is a microtubule-associated protein, we investigate whether DSB is involved in tau pathologies in Alzheimer\u27s disease (AD). First, immunohistochemistry reveals the frequent coexistence of DSB and phosphorylated tau in the cortex of AD patients. In vitro studies using primary mouse cortical neurons show that non-p-tau accumulates perinuclearly together with the tubulin after DSB induction with etoposide, followed by the accumulation of phosphorylated tau. Moreover, the knockdown of endogenous tau exacerbates DSB in neurons, suggesting the protective role of tau on DNA repair. Interestingly, synergistic exposure of neurons to microtubule disassembly and the DSB strikingly augments aberrant p-tau aggregation and apoptosis. These data suggest that DSB plays a pivotal role in AD-tau pathology and that the failure of DSB repair leads to tauopathy
    corecore