45 research outputs found

    Effects of calcium channel blockers on glucose tolerance, inflammatory state, and circulating progenitor cells in non-diabetic patients with essential hypertension: a comparative study between Azelnidipine and amlodipine on glucose tolerance and endothelial function - a crossover trial (AGENT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertension is associated with impaired glucose tolerance and insulin resistance. Medical treatment that interferes with various steps in the renin-angiotensin system improves glucose tolerance and insulin resistance. However, it remains unclear if long-acting calcium channel blockers (CCBs) such as azelnidipine and amlodipine affect glucose tolerance and insulin resistance in clinical practice.</p> <p>Methods</p> <p>Seventeen non-diabetic patients with essential hypertension who had controlled blood pressure levels using amlodipine (5 mg/day) were enrolled in this study. After randomization, either azelnidipine (16 mg/day) or amlodipine (5 mg/day) was administered in a crossover design for 12-weeks. At baseline and the end of each CCB therapy, samples of blood and urine were collected and 75 g oral glucose tolerance test (OGTT) was performed. In addition, hematopoietic progenitor cells (HPCs) were measured at each point by flow cytometry and endothelial functions were measured by fingertip pulse amplitude tonometry using EndoPAT.</p> <p>Results</p> <p>Although blood pressure levels were identical after each CCB treatment, the heart rate significantly decreased after azelnidipine administration than that after amlodipine administration (<it>P </it>< 0.005). Compared with amlodipine administration, azelnidipine significantly decreased levels of glucose and insulin 120 min after the 75 g OGTT (both <it>P </it>< 0.05). Serum levels of high-sensitivity C-reactive protein (<it>P </it>= 0.067) and interleukin-6 (<it>P </it>= 0.035) were decreased. Although endothelial functions were not different between the two medication groups, the number of circulating HPCs was significantly increased after azelnidipine administration (<it>P </it>= 0.016).</p> <p>Conclusions</p> <p>These results suggest that azelnidipine treatment may have beneficial effects on glucose tolerance, insulin sensitivity, the inflammatory state, and number of circulating progenitor cells in non-diabetic patients with essential hypertension.</p

    Case report: Ensitrelvir for treatment of persistent COVID-19 in lymphoma patients: a report of two cases

    Get PDF
    Persistent COVID-19 is a well recognized issue of concern in patients with hematological malignancies. Such patients are not only at risk of mortality due to the infection itself, but are also at risk of suboptimal malignancy-related outcomes because of delays and terminations of chemotherapy. We report two lymphoma patients with heavily pretreated persistent COVID-19 in which ensitrelvir brought about radical changes in the clinical course leading to rapid remissions. Patient 1 was on ibrutinib treatment for mantle cell lymphoma when he developed COVID-19 pneumonia which was severe and ongoing for 2 months despite therapy with molnupiravir, multiple courses of remdesivir, one course of sotrovimab, tocilizumab, and steroids. Patient 2 was administered R-CHOP therapy for diffuse large B-cell lymphoma when he developed COVID-19 which was ongoing for a month despite treatment with multiple courses of remdesivir and one course of sotrovimab. A 5-day administration of ensitrelvir promptly resolved the persistent COVID-19 accommodated by negative conversions of RT-qPCR tests in both patients within days. Ensitrelvir is a novel COVID-19 therapeutic that accelerates viral clearance through inhibition of the main protease of SARS-CoV-2, 3-chymotrypsin-like protease, which is vital for viral replication. Ensitrelvir is a promising treatment approach for immunocompromised lymphoma patients suffering from persisting and severe COVID-19

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Resolution of Parallel Deadlock by Partial Abortion

    No full text
    A distributed system is composed of multiple objects intercon-nected data type. Users write transactions to manipulate distributed objects in a nested fashion. Transactions are composed of operations and also atomic units of work for users. Each operation can call operations on another objects. Suppose that one operation op1 on an object o1 calls two operations op2 on p and op3 on q. op2 and op3 can be called in parallel. This means that op1 can be executed in parallel. In this sense, nest-ed transactions can be executed in parallel in the distributed systems. In this paper, we would like to discuss deadlock problems occurred when transactions are executed in parallel. 1

    Longitudinal Analyses after COVID-19 Recovery or Prolonged Infection Reveal Unique Immunological Signatures after Repeated Vaccinations

    No full text
    To develop preventive and therapeutic measures against coronavirus disease 2019, the complete characterization of immune response and sustained immune activation following viral infection and vaccination are critical. However, the mechanisms controlling intrapersonal variation in antibody titers against SARS-CoV-2 antigens remain unclear. To gain further insights, we performed a robust molecular and cellular investigation of immune responses in infected, recovered, and vaccinated individuals. We evaluated the serum levels of 29 cytokines and their correlation with neutralizing antibody titer. We investigated memory B-cell response in patients infected with the original SARS-CoV-2 strain or other variants, and in vaccinated individuals. Longitudinal correlation analyses revealed that post-vaccination neutralizing potential was more strongly associated with various serum cytokine levels in recovered patients than in na&iuml;ve individuals. We found that IL-10, CCL2, CXCL10, and IL-12p40 are candidate biomarkers of serum-neutralizing antibody titer after the vaccination of recovered individuals. We found a similar distribution of virus-specific antibody gene families in triple-vaccinated individuals and a patient with COVID-19 pneumonia for 1 year. Thus, distinct immune responses occur depending on the viral strain and clinical history, suggesting that therapeutic options should be selected on a case-by-case basis. Candidate biomarkers that correlate with repeated vaccination may support the efficacy and safety evaluation systems of mRNA vaccines and lead to the development of novel vaccine strategies
    corecore