91 research outputs found

    Nonlinear Ultrasonic Properties of As-Quenched Steels

    Get PDF
    We have investigated the effect of carbon content on the nonlinear ultrasonic parameter β and the longitudinal phase velocity v L in a series of martensitic steel specimens. The specimens were measured in the as-quenched state to insure that the carbon was present primarily as an interstitial in the martensite. Experimentally, β increased with increasing mass percent carbon (or hardness), while v Lremained virtually the same for all specimens. Therefore we conclude that β is sensitive to microstructural variations between the specimens, but v L is not. X-ray diffraction experiments indicate that the dislocation density in the specimens is high (∼1011/cm2) and increases with increasing carbon content. These results support the hypothesis that the observed increase in β may be attributed to dislocations affected by internal stresses in the quenched specimens

    Nonlinear acoustic and microwave absorption in glasses

    Full text link
    A theory of weakly-nonlinear low-temperature relaxational absorption of acoustic and electromagnetic waves in dielectric and metallic glasses is developed. Basing upon the model of two-level tunneling systems we show that the nonlinear contribution to the absorption can be anomalously large. This is the case at low enough frequencies, where freqeuency times the minimal relaxation time for the two-level system are much less than one. In dielectric glasses, the lowest-order nonlinear contribution is proportional to the wave's intensity. It is negative and exhibits anomalous frequency and temperature dependencies. In metallic glasses, the nonlinear contribution is also negative, and it is proportional to the square root of the wave's intensity and to the frequency. Numerical estimates show that the predicted nonlinear contribution can be measured experimentally

    Nonlinear acoustic and microwave absorption in disordered semiconductors

    Full text link
    Nonlinear hopping absorption of ultrasound and electromagnetic waves in amorphous and doped semiconductors is considered. It is shown that even at low amplitudes of the electric (or acoustic) field the nonlinear corrections to the relaxational absorption appear anomalously large. The physical reason for such behavior is that the nonlinear contribution is dominated by a small group of close impurity pairs having one electron per pair. Since the group is small, it is strongly influenced by the field. An external magnetic field strongly influences the absorption by changing the overlap between the pair components' wave functions. It is important that the influence is substantially different for the linear and nonlinear contributions. This property provides an additional tool to extract nonlinear effects.Comment: correction : misspelled name in references correcte

    Nonlinear Ultrasonic Properties of As-Quenched Steels

    Full text link

    Dislocation Kinks in Copper: Widths, Barriers, Effective Masses, and Quantum Tunneling

    Get PDF
    We calculate the widths, migration barriers, effective masses, and quantum tunneling rates of kinks and jogs in extended screw dislocations in copper, using an effective medium theory interatomic potential. The energy barriers and effective masses for moving a unit jog one lattice constant are close to typical atomic energies and masses: tunneling will be rare. The energy barriers and effective masses for the motion of kinks are unexpectedly small due to the spreading of the kinks over a large number of atoms. The effective masses of the kinks are so small that quantum fluctuations will be important. We discuss implications for quantum creep, kink--based tunneling centers, and Kondo resonances

    The Cause of ‘Weak-Link’ Grain Boundary Behaviour in Polycrystalline Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 Superconductors

    Get PDF
    The detrimental effects of grain boundaries have long been considered responsible for the low critical current densities (J_c) in high temperature superconductors. In this paper, we apply the quantitative approach used to identify the cause of the 'weak-link' grain boundary behaviour in YBa2Cu3O7 [1], to the Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 materials that we have fabricated. Magnetic and transport measurements are used to characterise the grain and grain boundary properties of micro- and nanocrystalline material. Magnetisation measurements on all nanocrystalline materials show non-Bean-like behaviour and are consistent with surface pinning. Bi2Sr2CaCu2O8: Our microcrystalline material has very low grain boundary resistivity (ρ_GB), which is similar to that of the grains (ρ_G) such that ρ_GB≈ρ_G=2×〖10〗^(-5) Ωm (assuming a grain boundary thickness (d) of 1 nm) equivalent to an areal resistivity of ρ_G=2×〖10〗^(-14) Ωm^2. The transport J_c values are consistent with well-connected grains and very weak grain boundary pinning. However, unlike low temperature superconductors in which decreasing grain size increases the pinning along the grain boundary channels, any increase in pinning produced by making the grains in our Bi2Sr2CaCu2O8 materials nanocrystalline was completely offset by a decrease in the depairing current density of the grain boundaries caused by their high resistivity. We suggest a different approach to increasing J_c from that used in LTS materials, namely incorporating additional strong grain and grain boundary pinning sites in microcrystalline materials to produce high J_c values. Bi2Sr2Ca2Cu3O10: Both our micro- and nanocrystalline samples have ρ_GB/ρ_G of at least 10^3. This causes strong suppression of J_c across the grain boundaries, which explains the low transport J_c values we find experimentally. Our calculations show that low J_c in untextured polycrystalline Bi2Sr2Ca2Cu3O10 material is to be expected and the significant effort in the community in texturing samples and removing grain boundaries altogether is well-founded

    Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys

    Full text link
    Dislocation velocities and mobilities are studied by Molecular Dynamics simulations for edge and screw dislocations in pure aluminum and nickel, and edge dislocations in Al-2.5%Mg and Al-5.0%Mg random substitutional alloys using EAM potentials. In the pure materials, the velocities of all dislocations are close to linear with the ratio of (applied stress)/(temperature) at low velocities, consistent with phonon drag models and quantitative agreement with experiment is obtained for the mobility in Al. At higher velocities, different behavior is observed. The edge dislocation velocity remains dependent solely on (applied stress)/(temperature) up to approximately 1.0 MPa/K, and approaches a plateau velocity that is lower than the smallest "forbidden" speed predicted by continuum models. In contrast, above a velocity around half of the smallest continuum wave speed, the screw dislocation damping has a contribution dependent solely on stress with a functional form close to that predicted by a radiation damping model of Eshelby. At the highest applied stresses, there are several regimes of nearly constant (transonic or supersonic) velocity separated by velocity gaps in the vicinity of forbidden velocities; various modes of dislocation disintegration and destabilization were also encountered in this regime. In the alloy systems, there is a temperature- and concentration-dependent pinning regime where the velocity drops sharply below the pure metal velocity. Above the pinning regime but at moderate stresses, the velocity is again linear in (applied stress)/(temperature) but with a lower mobility than in the pure metal.Comment: PDF, 30 pages including figures, submitted to Modelling Simul. Mater. Sci. En
    corecore