79 research outputs found
Models and model value in stochastic programming
Finding optimal decisions often involves the consideration of certain random or unknown parameters. A standard approach is to replace the random parameters by the expectations and to solve a deterministic mathematical program. A second approach is to consider possible future scenarios and the decision that would be best under each of these scenarios. The question then becomes how to choose among these alternatives. Both approaches may produce solutions that are far from optimal in the stochastic programming model that explicitly includes the random parameters. In this paper, we illustrate this advantage of a stochastic program model through two examples that are representative of the range of problems considered in stochastic programming. The paper focuses on the relative value of the stochastic program solution over a deterministic problem solution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44253/1/10479_2005_Article_BF02031741.pd
A simple randomised algorithm for convex optimisation: Application to two-stage stochastic programming
We consider maximising a concave function over a convex set by a simple randomised algorithm. The strength of the algorithm is that it requires only approximate function evaluations for the concave function and a weak membership oracle for the convex set. Under smoothness conditions on the function and the feasible set, we show that our algorithm computes a near-optimal point in a number of operations which is bounded by a polynomial function of all relevant input parameters and the reciprocal of the desired precision, with high probability. As an application to which the features of our algorithm are particularly useful we study two-stage stochastic programming problems. These problems have the property that evaluation of the objective function is #P-hard under appropriate assumptions on the models. Therefore, as a tool within our randomised algorithm, we devise a fully polynomial randomised approximation scheme for these function evaluations, under appropriate assumptions on the models. Moreover, we deal with smoothing the feasible set, which in two-stage stochastic programming is a polyhedron
Convergence Analysis of Some Methods for Minimizing a Nonsmooth Convex Function
In this paper, we analyze a class of methods for minimizing a proper lower semicontinuous extended-valued convex function . Instead of the original objective function f , we employ a convex approximation f k + 1 at the k th iteration. Some global convergence rate estimates are obtained. We illustrate our approach by proposing (i) a new family of proximal point algorithms which possesses the global convergence rate estimate even it the iteration points are calculated approximately, where are the proximal parameters, and (ii) a variant proximal bundle method. Applications to stochastic programs are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45249/1/10957_2004_Article_417694.pd
- …