181 research outputs found

    Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3

    Full text link
    The discovery of 2-dimensional (2D) materials, such as CrI3, that retain magnetic ordering at monolayer thickness has resulted in a surge of research in 2D magnetism from both pure and applied perspectives. Here, we report a magneto-Raman spectroscopy study on multilayered CrI3, focusing on two new features in the spectra which appear at temperatures below the magnetic ordering temperature and were previously assigned to high frequency magnons. We observe a striking evolution of the Raman spectra with increasing magnetic field in which clear, sudden changes in intensities of the modes are attributed to the interlayer ordering changing from antiferromagnetic to ferromagnetic at a critical magnetic field. Our work highlights the sensitivity of the Raman modes to weak interlayer spin ordering in CrI3. In addition, we theoretically examine potential origins for the new modes, which we deduce are unlikely single magnons

    Ring-Exchange Interaction Effects on Magnons in Dirac Magnet CoTiO3_3

    Full text link
    In magnetically ordered materials with localized electrons, the fundamental magnetic interactions are due to exchange of electrons [1-3]. Typically, only the interaction between pairs of electrons' spins is considered to explain the nature of the ground state and its excitations, whereas three-, four-, and six-spin interactions are ignored. When these higher order processes occur in a loop they are called cyclic or ring exchange. The ring-exchange interaction is required to explain low temperature behavior in bulk and thin films of solid 3^3He [4-8]. It also plays a crucial role in the quantum magnet La2_2CuO4_4 [9,10]. Here, we use a combination of time domain THz (TDTS) and magneto-Raman spectroscopies to measure the low energy magnetic excitations in CoTiO3_3, a proposed Dirac topological magnon material [11,12] where the origin of the energy gap in the magnon spectrum at the Brillouin zone center remains unclear. We measured the magnetic field dependence of the energies of the two lowest energy magnons and determine that the gap opens due to the ring-exchange interaction between the six spins in a hexagon. This interaction also explains the selection rules of the THz magnon absorption. Finally, we clarify that topological surface magnons are not expected in CoTiO3_3. Our study demonstrates the power of combining TDTS and Raman spectroscopies with theory to identify the microscopic origins of the magnetic excitations in quantum magnets.Comment: 7 pages, 4 figures in main text, 26 pages and 11 figures in supplemen

    Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3_{3}

    Get PDF
    The discovery of 2-dimensional (2D) materials, such as CrI3_{3}, that retain magnetic ordering at monolayer thickness has resulted in a surge of both pure and applied research in 2D magnetism. Here, we report a magneto-Raman spectroscopy study on multilayered CrI3_{3}, focusing on two additional features in the spectra that appear below the magnetic ordering temperature and were previously assigned to high frequency magnons. Instead, we conclude these modes are actually zone-folded phonons. We observe a striking evolution of the Raman spectra with increasing magnetic field applied perpendicular to the atomic layers in which clear, sudden changes in intensities of the modes are attributed to the interlayer ordering changing from antiferromagnetic to ferromagnetic at a critical magnetic field. Our work highlights the sensitivity of the Raman modes to weak interlayer spin ordering in CrI3_{3}
    • …
    corecore