60 research outputs found

    Sedline® Miscalculation of Depth of Anaesthesia Variables in Two Pigs Due to Electrocardiographic Signal Contamination.

    Get PDF
    Two young (11-week-old) pigs underwent sole propofol anaesthesia as part of an experimental study. The depth of anaesthesia was evaluated both clinically and using the electroencephalography(EEG)-based monitor Sedline; in particular, the patient state index, suppression ratio, raw EEG traces, and its spectrogram were assessed. Physiological parameters and electrocardiographic activity were continuously monitored. In one pig (Case 1), during the administration of high doses of propofol, the Sedline-generated variables suddenly indicated an increased EEG activity while this was not confirmed by observation of either the raw EEG or its spectrogram. In the second pig (Case 2), a similar event was recorded during euthanasia with systemic pentobarbital. Both events happened while the EEG activity was isoelectric except for signal interferences and synchronous in rhythm and shape with the electrocardiographic activity. The suggestion of increased brain activity based on the interpretation of the Sedline variables was suspected wrong; most probably due to electrocardiographic interferences. In pigs, the patient state index and suppression ratio, as calculated by the Sedline monitor, could be influenced by the electrocardiographic activity contaminating the EEG trace, especially during otherwise isoelectric periods (strong EEG depression). Visual interpretation of the raw EEG and of the spectrogram remains necessary to identify such artefacts

    The nuts and bolts of multimodal anaesthesia in the 21st century: a primer for clinicians.

    Get PDF
    PURPOSE OF REVIEW This review article explores the application of multimodal anaesthesia in general anaesthesia, particularly in conjunction with locoregional anaesthesia, specifically focusing on the importance of EEG monitoring. We provide an evidence-based guide for implementing multimodal anaesthesia, encompassing drug combinations, dosages, and EEG monitoring techniques, to ensure reliable intraoperative anaesthesia while minimizing adverse effects and improving patient outcomes. RECENT FINDINGS Opioid-free and multimodal general anaesthesia have significantly reduced opioid addiction and chronic postoperative pain. However, the evidence supporting the effectiveness of these approaches is limited. This review attempts to integrate research from broader neuroscientific fields to generate new clinical hypotheses. It discusses the correlation between high-dose intraoperative opioids and increased postoperative opioid consumption and their impact on pain indices and readmission rates. Additionally, it explores the relationship between multimodal anaesthesia and pain processing models and investigates the potential effects of nonpharmacological interventions on preoperative anxiety and postoperative pain. SUMMARY The integration of EEG monitoring is crucial for guiding adequate multimodal anaesthesia and preventing excessive anaesthesia dosing. Furthermore, the review investigates the impact of combining regional and opioid-sparing general anaesthesia on perioperative EEG readings and anaesthetic depth. The findings have significant implications for clinical practice in optimizing multimodal anaesthesia techniques (Supplementary Digital Content 1: Video Abstract, http://links.lww.com/COAN/A96)

    EEG responses to standardised noxious stimulation during clinical anaesthesia: a pilot study.

    Get PDF
    BACKGROUND During clinical anaesthesia, the administration of analgesics mostly relies on empirical knowledge and observation of the patient's reactions to noxious stimuli. Previous studies in healthy volunteers under controlled conditions revealed EEG activity in response to standardised nociceptive stimuli even at high doses of remifentanil and propofol. This pilot study aims to investigate the feasibility of using these standardised nociceptive stimuli in routine clinical practice. METHODS We studied 17 patients undergoing orthopaedic trauma surgery under general anaesthesia. We evaluated if the EEG could track standardised noxious phase-locked electrical stimulation and tetanic stimulation, a time-locked surrogate for incisional pain, before, during, and after the induction of general anaesthesia. Subsequently, we analysed the effect of tetanic stimulation on the surgical pleth index as a peripheral, vegetative, nociceptive marker. RESULTS We found that the phase-locked evoked potentials after noxious electrical stimulation vanished after the administration of propofol, but not at low concentrations of remifentanil. After noxious tetanic stimulation under general anaesthesia, there were no consistent spectral changes in the EEG, but the vegetative response in the surgical pleth index was statistically significant (Hedges' g effect size 0.32 [95% confidence interval 0.12-0.77], P=0.035). CONCLUSION Our standardised nociceptive stimuli are not optimised for obtaining consistent EEG responses in patients during clinical anaesthesia. To validate and sufficiently reproduce EEG-based standardised stimulation as a marker for nociception in clinical anaesthesia, other pain models or stimulation settings might be required to transfer preclinical studies into clinical practice. CLINICAL TRIAL REGISTRATION DRKS00017829

    Lower alpha frequency of intraoperative frontal EEG is associated with postoperative delirium: A secondary propensity-matched analysis.

    Get PDF
    BACKGROUND Postoperative delirium (POD) is a serious complication of surgery, especially in the elderly patient population. It has been proposed that decreasing the amount of anesthetics by titrating to an EEG index will lower POD rate, but clear evidence is missing. A strong age-dependent negative correlation has been reported between the peak oscillatory frequency of alpha waves and end-tidal anesthetic concentration, with older patients generating slower alpha frequencies. We hypothesized, that slower alpha oscillations are associated with a higher rate of POD. METHOD Retrospective analysis of patients` data from a prospective observational study in cardiac surgical patients approved by the Bernese Ethics committee. Frontal EEG was recorded during Isoflurane effect-site concentrations of 0.7 to 0.8 and peak alpha frequency was measured at highest power between 6 and 17 Hz. Delirium was assessed by chart review. Demographic and clinical characteristics were compared between POD and non-POD groups. Selection bias was addressed using nearest neighbor propensity score matching (PSM) for best balance. This incorporated 18 variables, whereas patients with missing variable information or without an alpha oscillation were excluded. RESULT Of the 1072 patients in the original study, 828 were included, 73 with POD, 755 without. PSM allowed 328 patients into the final analysis, 67 with, 261 without POD. Before PSM, 8 variables were significantly different between POD and non-POD groups, none thereafter. Mean peak alpha frequency was significantly lower in the POD in contrast to non-POD group before and after matching (7.9 vs 8.9 Hz, 7.9 vs 8.8 Hz respectively, SD 1.3, p < 0.001). CONCLUSION Intraoperative slower frontal peak alpha frequency is independently associated with POD after cardiac surgery and may be a simple intraoperative neurophysiological marker of a vulnerable brain for POD. Further studies are needed to investigate if there is a causal link between alpha frequency and POD

    Permutation entropy is not an age-independent parameter for EEG-based anesthesia monitoring.

    Get PDF
    BACKGROUND An optimized anesthesia monitoring using electroencephalographic (EEG) information in the elderly could help to reduce the incidence of postoperative complications. Processed EEG information that is available to the anesthesiologist is affected by the age-induced changes of the raw EEG. While most of these methods indicate a "more awake" patient with age, the permutation entropy (PeEn) has been proposed as an age-independent measure. In this article, we show that PeEn is also influenced by age, independent of parameter settings. METHODS We retrospectively analyzed the EEG of more than 300 patients, recorded during steady state anesthesia without stimulation, and calculated the PeEn for different embedding dimensions m that was applied to the EEG filtered to a wide variety of frequency ranges. We constructed linear models to evaluate the relationship between age and PeEn. To compare our results to published studies, we also performed a stepwise dichotomization and used non-parametric tests and effect sizes for pairwise comparisons. RESULTS We found a significant influence of age on PeEn for all settings except for narrow band EEG activity. The analysis of the dichotomized data also revealed significant differences between old and young patients for the PeEn settings used in published studies. CONCLUSION Based on our findings, we could show the influence of age on PeEn. This result was independent of parameter, sample rate, and filter settings. Hence, age should be taken into consideration when using PeEn to monitor patient EEG

    Improved Characterization of Visual Evoked Potentials in Multiple Sclerosis by Topographic Analysis

    Get PDF
    In multiple sclerosis (MS), the combination of visual, somatosensory and motor evoked potentials (EP) has been shown to be highly correlated with the Expanded Disability Severity Scale (EDSS) and to predict the disease course. In the present study, we explored whether the significance of the visual EP (VEP) can be improved with multichannel recordings (204 electrodes) and topographic analysis (tVEP). VEPs were analyzed in 83 MS patients (median EDSS 2.0; 52% with history of optic neuritis; hON) and 47 healthy controls (HC). TVEP components were automatically defined on the basis of spatial similarity between the scalp potential fields (topographic maps) of single subjects' VEPs and reference maps generated from HC. Non-ambiguous measures of latency, amplitude and configuration were derived from the maps reflecting the P100 component. TVEP was compared to conventional analysis (cVEP) with respect to reliability in HC, validity using descriptors of logistic regression models, and sensitivity derived from receiver operating characteristics curves. In tVEP, reliability tended to be higher for measurement of amplitude (p=0.06). Regression models on diagnosis (MS vs. HC) and hON were more favorable using tVEP- versus cVEP-predictors. Sensitivity was increased in tVEP versus cVEP: 72% versus 60% for diagnosis, and 88% versus 77% for hON. The advantage of tVEP was most pronounced in pathological VEPs, in which cVEPs were often ambiguous. TVEP is a reliable, valid, and sensitive method of objectively quantifying pathological VEP in particular. In combination with other EP modalities, tVEP may improve the monitoring of disease course in MS
    corecore