75 research outputs found
Intrinsic gain modulation and adaptive neural coding
In many cases, the computation of a neural system can be reduced to a
receptive field, or a set of linear filters, and a thresholding function, or
gain curve, which determines the firing probability; this is known as a
linear/nonlinear model. In some forms of sensory adaptation, these linear
filters and gain curve adjust very rapidly to changes in the variance of a
randomly varying driving input. An apparently similar but previously unrelated
issue is the observation of gain control by background noise in cortical
neurons: the slope of the firing rate vs current (f-I) curve changes with the
variance of background random input. Here, we show a direct correspondence
between these two observations by relating variance-dependent changes in the
gain of f-I curves to characteristics of the changing empirical
linear/nonlinear model obtained by sampling. In the case that the underlying
system is fixed, we derive relationships relating the change of the gain with
respect to both mean and variance with the receptive fields derived from
reverse correlation on a white noise stimulus. Using two conductance-based
model neurons that display distinct gain modulation properties through a simple
change in parameters, we show that coding properties of both these models
quantitatively satisfy the predicted relationships. Our results describe how
both variance-dependent gain modulation and adaptive neural computation result
from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio
Vacuum Topology of the Two Higgs Doublet Model
We perform a systematic study of generic accidental Higgs-family and CP
symmetries that could occur in the two-Higgs-doublet-model potential, based on
a Majorana scalar-field formalism which realizes a subgroup of GL(8,C). We
derive the general conditions of convexity and stability of the scalar
potential and present analytical solutions for two non-zero neutral vacuum
expectation values of the Higgs doublets for a typical set of six symmetries,
in terms of the gauge-invariant parameters of the theory. By means of a
homotopy-group analysis, we identify the topological defects associated with
the spontaneous symmetry breaking of each symmetry, as well as the massless
Goldstone bosons emerging from the breaking of the continuous symmetries. We
find the existence of domain walls from the breaking of Z_2, CP1 and CP2
discrete symmetries, vortices in models with broken U(1)_PQ and CP3 symmetries
and a global monopole in the SO(3)_HF-broken model. The spatial profile of the
topological defect solutions is studied in detail, as functions of the
potential parameters of the two-Higgs doublet model. The application of our
Majorana scalar-field formalism in studying more general scalar potentials that
are not constrained by the U(1)_Y hypercharge symmetry is discussed. In
particular, the same formalism may be used to properly identify seven
additional symmetries that may take place in a U(1)_Y-invariant scalar
potential.Comment: 89 pages, 13 tables and 12 figures (version as to appear in JHEP
Midgut Barrier Imparts Selective Resistance to Filarial Worm Infection in Culex pipiens pipiens
Mosquitoes in the Culex pipiens complex thrive in temperate and tropical regions worldwide, and serve as efficient vectors of Bancroftian lymphatic filariasis (LF) caused by Wuchereria bancrofti in Asia, Africa, the West Indies, South America, and Micronesia. However, members of this mosquito complex do not act as natural vectors for Brugian LF caused by Brugia malayi, or for the cat parasite B. pahangi, despite their presence in South Asia where these parasites are endemic. Previous work with the Iowa strain of Culex pipiens pipiens demonstrates that it is equally susceptible to W. bancrofti as is the natural Cx. p. pipiens vector in the Nile Delta, however it is refractory to infection with Brugia spp. Here we report that the infectivity barrier for Brugia spp. in Cx. p. pipiens is the mosquito midgut, which inflicts internal and lethal damage to ingested microfilariae. Following per os Brugia exposures, the prevalence of infection is significantly lower in Cx. p. pipiens compared to susceptible mosquito controls, and differs between parasite species with <50% and <5% of Cx. p. pipiens becoming infected with B. pahangi and B. malayi, respectively. When Brugia spp. mf were inoculated intrathoracically to bypass the midgut, larvae developed equally well as in controls, indicating that, beyond the midgut, Cx. p. pipiens is physiologically compatible with Brugia spp. Mf isolated from Cx. p. pipiens midguts exhibited compromised motility, and unlike mf derived from blood or isolated from the midguts of Ae. aegypti, failed to develop when inoculated intrathoracically into susceptible mosquitoes. Together these data strongly support the role of the midgut as the primary infection barrier for Brugia spp. in Cx. p. pipiens. Examination of parasites recovered from the Cx. p. pipiens midgut by vital staining, and those exsheathed with papain, suggest that the damage inflicted by the midgut is subcuticular and disrupts internal tissues. Microscopic studies of these worms reveal compromised motility and sharp bends in the body; and ultrastructurally the presence of many fluid or carbohydrate-filled vacuoles in the hypodermis, body wall, and nuclear column. Incubation of Brugia mf with Cx. p. pipiens midgut extracts produces similar internal damage phenotypes; indicating that the Cx. p. pipiens midgut factor(s) that damage mf in vivo are soluble and stable in physiological buffer, and inflict damage on mf in vitro
Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1
Cells have evolved mechanisms to protect, restart and repair perturbed replication forks, allowing full genome duplication, even under replication stress. Interrogating the interplay between nuclease-helicase Dna2 and Holliday junction (HJ) resolvase Yen1, we find the Dna2 helicase activity acts parallel to homologous recombination (HR) in promoting DNA replication and chromosome detachment at mitosis after replication fork stalling. Yen1, but not the HJ resolvases Slx1-Slx4 and Mus81-Mms4, safeguards chromosome segregation by removing replication intermediates that escape Dna2. Post-replicative DNA damage checkpoint activation in Dna2 helicase-defective cells causes terminal G2/M arrest by precluding Yen1-dependent repair, whose activation requires progression into anaphase. These findings explain the exquisite replication stress sensitivity of Dna2 helicase-defective cells, and identify a non-canonical role for Yen1 in the processing of replication intermediates that is distinct from HJ resolution. The involvement of Dna2 helicase activity in completing replication may have implications for DNA2-associated pathologies, including cancer and Seckel syndrome
Large-scale unit commitment under uncertainty: an updated literature survey
The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
Describing knowledge encounters in healthcare: a mixed studies systematic review and development of a classification
This review was self-funded
Growth and reproduction in the Antarctic brooding bivalve Adacnarca nitens (Philobryidae) from the Ross Sea
We present information on the reproductive biology, population structure, and growth of the brooding Antarctic bivalve Adacnarca nitens Pelseneer 1903, from the Ross Sea, Antarctica. Individuals ranging from 0.85 - 6.00 mm were found attached to a hydrozoan colony. This species shows low fecundity and large egg size, common to other brooding species. The minimum size at which oogenesis was detected was 2.3 mm and the minimum size at which brooding was evident was 3.9 mm. Embryos of a full range of developmental stages were brooded simultaneously in females. The population showed a log-normal distribution and results suggest non-periodic reproduction with continuous embryonic development. The reproductive traits of A. nitens are discussed in the context of circum-Antarctic species distribution and limitations to dispersal in brooding benthic invertebrates
- …