8,946 research outputs found

    A Primer for Monitoring Water Funds

    Get PDF
    This document is intended to assist people working on Water Funds to understand their information needs and become familiar with the strengths and weaknesses of various monitoring approaches. This primer is not intended to make people monitoring experts, but rather to help them become familiar with and conversant in the major issues so they can communicate effectively with experts to design a scientifically defensible monitoring program.The document highlights the critical information needs common to Water Fund projects and summarizes issues and steps to address in developing a Water Fund monitoring program. It explains key concepts and challenges; suggests monitoring parameters and an array of sampling designs to consider as a starting-point; and provides suggestions for further reading, links to helpful resources,and an annotated bibliography of studies on the impacts that result from activities commonly implemented in Water Fund projects

    The effect of tip shields on a horizontal tail surface

    Get PDF
    A series of experiments made in the wind tunnel of the Daniel Guggenheim School of Aeronautics, New York University, on the effect of tip shields on a horizontal tail surface are described and discussed. It was found that some aerodynamic gain can be obtained by the use of tip shields though it is considered doubtful whether their use would be practical

    Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    Get PDF
    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model

    Gapped tunneling spectra in the normal state of Pr2x_{2-x}Cex_xCuO4_4

    Full text link
    We present tunneling data in the normal state of the electron doped cuprate superconductor Pr2x_{2-x}Cex_xCuO4_4 for three different values of the doping xx. The normal state is obtained by applying a magnetic field greater than the upper critical field, Hc2H_{c2} for T<TcT < T_c. We observe an anomalous normal state gap near the Fermi level. From our analysis of the tunneling data we conclude that this is a feature of the normal state density of states. We discuss possible reasons for the formation of this gap and its implications for the nature of the charge carriers in the normal and the superconducting states of cuprate superconductors.Comment: 7 pages ReVTeX, 11 figures files included, submitted to PR

    Topological properties of Berry's phase

    Full text link
    By using a second quantized formulation of level crossing, which does not assume adiabatic approximation, a convenient formula for geometric terms including off-diagonal terms is derived. The analysis of geometric phases is reduced to a simple diagonalization of the Hamiltonian in the present formulation. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial for any finite time interval TT. The topological interpretation of Berry's phase such as the topological proof of phase-change rule thus fails in the practical Born-Oppenheimer approximation, where a large but finite ratio of two time scales is involved.Comment: 9 pages. A new reference was added, and the abstract and the presentation in the body of the paper have been expanded and made more precis

    Cell-free Synthesis of Pea Seed Proteins

    Full text link

    Signed zeros of Gaussian vector fields-density, correlation functions and curvature

    Full text link
    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear in J. Phys.

    Geometric phases and hidden local gauge symmetry

    Full text link
    The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a sub-class of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases.Comment: 25 pages, 1 figure. Some typos have been corrected. To be published in Phys. Rev.

    Stick-slip instability for viscous fingering in a gel

    Full text link
    The growth dynamics of an air finger injected in a visco-elastic gel (a PVA/borax aqueous solution) is studied in a linear Hele-Shaw cell. Besides the standard Saffmann-Taylor instability, we observe - with increasing finger velocities - the existence of two new regimes: (a) a stick-slip regime for which the finger tip velocity oscillates between 2 different values, producing local pinching of the finger at regular intervals, (b) a ``tadpole'' regime where a fracture-type propagation is observed. A scaling argument is proposed to interpret the dependence of the stick-slip frequency with the measured rheological properties of the gel.Comment: 7 pages, 4 figures. Submitted to Europhysics Letter

    The distribution of extremal points of Gaussian scalar fields

    Full text link
    We consider the signed density of the extremal points of (two-dimensional) scalar fields with a Gaussian distribution. We assign a positive unit charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without boundary). We apply the general results to random waves and random surfaces. Furthermore, we find a generating functional for the two-point function. Its Legendre transform is the integral over the scalar curvature of a 4-dimensional Riemannian manifold.Comment: 22 pages, 8 figures, corrected published versio
    corecore