531 research outputs found

    SCAN: Learning Hierarchical Compositional Visual Concepts

    Get PDF
    The seemingly infinite diversity of the natural world arises from a relatively small set of coherent rules, such as the laws of physics or chemistry. We conjecture that these rules give rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts. If such representations are compositional and hierarchical, they can be recombined into an exponentially large set of new concepts. This paper describes SCAN (Symbol-Concept Association Network), a new framework for learning such abstractions in the visual domain. SCAN learns concepts through fast symbol association, grounding them in disentangled visual primitives that are discovered in an unsupervised manner. Unlike state of the art multimodal generative model baselines, our approach requires very few pairings between symbols and images and makes no assumptions about the form of symbol representations. Once trained, SCAN is capable of multimodal bi-directional inference, generating a diverse set of image samples from symbolic descriptions and vice versa. It also allows for traversal and manipulation of the implicit hierarchy of visual concepts through symbolic instructions and learnt logical recombination operations. Such manipulations enable SCAN to break away from its training data distribution and imagine novel visual concepts through symbolically instructed recombination of previously learnt concepts

    Superconducting Phase with Fractional Vortices in the Frustrated Kagome Wire Network at f=1/2

    Full text link
    In classical XY kagome antiferromagnets, there can be a novel low temperature phase where ψ3=ei3θ\psi^3=e^{i3\theta} has quasi-long-range order but ψ\psi is disordered, as well as more conventional antiferromagnetic phases where ψ\psi is ordered in various possible patterns (θ\theta is the angle of orientation of the spin). To investigate when these phases exist in a physical system, we study superconducting kagome wire networks in a transverse magnetic field when the magnetic flux through an elementary triangle is a half of a flux quantum. Within Ginzburg-Landau theory, we calculate the helicity moduli of each phase to estimate the Kosterlitz-Thouless (KT) transition temperatures. Then at the KT temperatures, we estimate the barriers to move vortices and effects that lift the large degeneracy in the possible ψ\psi patterns. The effects we have considered are inductive couplings, non-zero wire width, and the order-by-disorder effect due to thermal fluctuations. The first two effects prefer q=0q=0 patterns while the last one selects a 3×3\sqrt{3}\times\sqrt{3} pattern of supercurrents. Using the parameters of recent experiments, we conclude that at the KT temperature, the non-zero wire width effect dominates, which stabilizes a conventional superconducting phase with a q=0q=0 current pattern. However, by adjusting the experimental parameters, for example by bending the wires a little, it appears that the novel ψ3\psi^3 superconducting phase can instead be stabilized. The barriers to vortex motion are low enough that the system can equilibrate into this phase.Comment: 30 pages including figure

    MRCK-1 Drives Apical Constriction in C. elegans by Linking Developmental Patterning to Force Generation

    Get PDF
    Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis

    MGMT promoter methylation testing to predict overall survival in people with glioblastoma treated with temozolomide:a comprehensive meta-analysis based on a Cochrane Review

    Get PDF
    BACKGROUND: The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) causes resistance of tumor cells to alkylating agents. It is a predictive biomarker in high-grade gliomas treated with temozolomide, however, there is no consensus on which test method, methylation sites, and cutoff values to use. METHODS: We performed a Cochrane Review to examine studies using different techniques to measure MGMT and predict survival in glioblastoma patients treated with temozolomide. Eligible longitudinal studies included (i) adults with glioblastoma treated with temozolomide with or without radiotherapy, or surgery; (ii) where MGMT status was determined in tumor tissue, and assessed by 1 or more technique; and (iii) where overall survival was an outcome parameter, with sufficient information to estimate hazard ratios (HRs). Two or more methods were compared in 32 independent cohorts with 3474 patients. RESULTS: Methylation-specific PCR (MSP) and pyrosequencing (PSQ) techniques were more prognostic than immunohistochemistry for MGMT protein, and PSQ is a slightly better predictor than MSP. CONCLUSIONS: We cannot draw strong conclusions about use of frozen tissue vs formalin-fixed paraffin-embedded in MSP and PSQ. Also, our meta-analysis does not provide strong evidence about the best CpG sites or threshold. MSP has been studied mainly for CpG sites 76-80 and 84-87 and PSQ at CpG sites ranging from 72 to 95. A cutoff threshold of 9% for CpG sites 74-78 performed better than higher thresholds of 28% or 29% in 2 of the 3 good-quality studies. About 190 studies were identified presenting HRs from survival analysis in patients in which MGMT methylation was measured by 1 technique only
    • …
    corecore