531 research outputs found
SCAN: Learning Hierarchical Compositional Visual Concepts
The seemingly infinite diversity of the natural world arises from a
relatively small set of coherent rules, such as the laws of physics or
chemistry. We conjecture that these rules give rise to regularities that can be
discovered through primarily unsupervised experiences and represented as
abstract concepts. If such representations are compositional and hierarchical,
they can be recombined into an exponentially large set of new concepts. This
paper describes SCAN (Symbol-Concept Association Network), a new framework for
learning such abstractions in the visual domain. SCAN learns concepts through
fast symbol association, grounding them in disentangled visual primitives that
are discovered in an unsupervised manner. Unlike state of the art multimodal
generative model baselines, our approach requires very few pairings between
symbols and images and makes no assumptions about the form of symbol
representations. Once trained, SCAN is capable of multimodal bi-directional
inference, generating a diverse set of image samples from symbolic descriptions
and vice versa. It also allows for traversal and manipulation of the implicit
hierarchy of visual concepts through symbolic instructions and learnt logical
recombination operations. Such manipulations enable SCAN to break away from its
training data distribution and imagine novel visual concepts through
symbolically instructed recombination of previously learnt concepts
Superconducting Phase with Fractional Vortices in the Frustrated Kagome Wire Network at f=1/2
In classical XY kagome antiferromagnets, there can be a novel low temperature
phase where has quasi-long-range order but is
disordered, as well as more conventional antiferromagnetic phases where
is ordered in various possible patterns ( is the angle of orientation
of the spin). To investigate when these phases exist in a physical system, we
study superconducting kagome wire networks in a transverse magnetic field when
the magnetic flux through an elementary triangle is a half of a flux quantum.
Within Ginzburg-Landau theory, we calculate the helicity moduli of each phase
to estimate the Kosterlitz-Thouless (KT) transition temperatures. Then at the
KT temperatures, we estimate the barriers to move vortices and effects that
lift the large degeneracy in the possible patterns. The effects we have
considered are inductive couplings, non-zero wire width, and the
order-by-disorder effect due to thermal fluctuations. The first two effects
prefer patterns while the last one selects a
pattern of supercurrents. Using the parameters of recent experiments, we
conclude that at the KT temperature, the non-zero wire width effect dominates,
which stabilizes a conventional superconducting phase with a current
pattern. However, by adjusting the experimental parameters, for example by
bending the wires a little, it appears that the novel superconducting
phase can instead be stabilized. The barriers to vortex motion are low enough
that the system can equilibrate into this phase.Comment: 30 pages including figure
MRCK-1 Drives Apical Constriction in C. elegans by Linking Developmental Patterning to Force Generation
Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis
Recommended from our members
An Inverted Co-Flow Diffusion Flame for Producing Soot
We developed an inverted, co-flow, methane/air/nitrogen burner that generates a wide range of soot particles sizes and concentrations. By adjusting the flow rates of air, methane, and nitrogen in the fuel, the mean electric mobility diameter and number concentration are varied. Additional dilution downstream of the flame allows us to generate particle concentrations spanning those produced by spark-ignited and diesel engines: particles with mean diameters between 50 and 250 nm and number concentrations from 4.7 {center_dot} 10{sup 4} to 10{sup 7} cm{sup -3}. The range of achievable number concentrations, and therefore volume concentrations, can be increased by a factor of 30 by reducing the dilution ratio. These operating conditions make this burner valuable for developing and calibrating diagnostics as well as for other studies involving soot particles
MGMT promoter methylation testing to predict overall survival in people with glioblastoma treated with temozolomide:a comprehensive meta-analysis based on a Cochrane Review
BACKGROUND: The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) causes resistance of tumor cells to alkylating agents. It is a predictive biomarker in high-grade gliomas treated with temozolomide, however, there is no consensus on which test method, methylation sites, and cutoff values to use. METHODS: We performed a Cochrane Review to examine studies using different techniques to measure MGMT and predict survival in glioblastoma patients treated with temozolomide. Eligible longitudinal studies included (i) adults with glioblastoma treated with temozolomide with or without radiotherapy, or surgery; (ii) where MGMT status was determined in tumor tissue, and assessed by 1 or more technique; and (iii) where overall survival was an outcome parameter, with sufficient information to estimate hazard ratios (HRs). Two or more methods were compared in 32 independent cohorts with 3474 patients. RESULTS: Methylation-specific PCR (MSP) and pyrosequencing (PSQ) techniques were more prognostic than immunohistochemistry for MGMT protein, and PSQ is a slightly better predictor than MSP. CONCLUSIONS: We cannot draw strong conclusions about use of frozen tissue vs formalin-fixed paraffin-embedded in MSP and PSQ. Also, our meta-analysis does not provide strong evidence about the best CpG sites or threshold. MSP has been studied mainly for CpG sites 76-80 and 84-87 and PSQ at CpG sites ranging from 72 to 95. A cutoff threshold of 9% for CpG sites 74-78 performed better than higher thresholds of 28% or 29% in 2 of the 3 good-quality studies. About 190 studies were identified presenting HRs from survival analysis in patients in which MGMT methylation was measured by 1 technique only
- …