6 research outputs found
Painleve equations from Darboux chains - Part 1: P3-P5
We show that the Painleve equations P3-P5 can be derived (in a unified way)
from a periodic sequence of Darboux transformations for a Schrodinger problem
with quadratic eigenvalue dependency. The general problem naturally divides
into three different branches, each described by an infinite chain of
equations. The Painleve equations are obtained by closing the chain
periodically at the lowest nontrivial level(s). The chains provide ``symmetric
forms'' for the Painleve equations, from which Hirota bilinear forms and Lax
pairs are derived. In this paper (Part 1) we analyze in detail the cases P3-P5,
while P6 will be studied in Part 2.Comment: 23 pages, 1 reference added + minor change
Symbolic software for soliton theory
program tests for the existence of solitons for nonlinear PDEs. It explicitly constructs solitons using Hirota’s bilinear method. In the second program, the Painlevé integrability test for ODEs and PDEs is implemented. The third program provides an algorithm to compute conserved densities for nonlinear evolution equations. The fourth software package aids in the computation of Lie symmetries of systems of differential and difference-differential equations. Several examples illustrate the capabilities of the software. Key words: soliton theory, symbolic programs, Hirota method, Painlevé test, Lie symmetries, conserved densities