1,004 research outputs found

    Keck Observations of the Hidden Quasar IRAS P09104+4109

    Get PDF
    We present imaging and spectro- polarimetric observations of the ultraluminous infrared galaxy IRAS P09104+4109 using the Keck 10-m Telescope. We detect the clear presence of broad Hb, Hg, and MgII 2800 emission lines in the polarized flux spectra of the nucleus and of an extranuclear emission region ~ 4" away, confirming the presence of a hidden central quasar. The polarization of the broad Mg II emission line is high (~ 29%), consistent with the remarkably high polarization (~ 30%-40%) observed in the extended continuum emission. The narrow emission lines are polarized in a stratified fashion, with the high ionization lines being polarized 0.7%-1.7% and [O II] essentially unpolarized. The line polarizations are positively correlated with critical density, ionization potential, and velocity width of the emission lines. This indicates that the NLR may be partially shadowed by the putative torus, with the higher ionization lines originating closer to the nucleus. One notable characteristic of the extranuclear knot is that all species of Fe are markedly absent in its spectrum, while they appear prominently in the nucleus. Our favored interpretation is that there is a large amount of dust in the extranuclear regions, allowing gaseous refractory metals to deposit. The extended emission regions are most likely material shredded from nearby cluster members and not gas condensed from the cooling flow or expelled from the obscured quasar. Our data provide strong evidence for matter-bounded clouds in addition to ionization-bounded clouds in the NLR. Ionization by pure velocity shocks can be ruled out. Shocks with photoionizing precursors may be present, but are probably not a dominant contributor to the energy input.Comment: 32 pages, including 9 figs and 2 tables, to be published in the Astronomical Journa

    Hidden Broad Line Seyfert 2 Galaxies in the CfA and 12micron Samples

    Full text link
    We report the results of a spectropolarimetric survey of the CfA and 12micron samples of Seyfert 2 galaxies (S2s). Polarized (hidden) broad line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12micron S2 sample shows a significantly higher incidence of HBLR (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden AGNs. Compared to the non-HBLR S2s, the HBLR S2s display distinctly higher radio power relative to their far-infrared output and hotter dust temperature as indicated by the f25/f60 color. However, the level of obscuration is indistinguishable between the two types of S2. These results strongly support the existence of two intrinsically different populations of S2: one harboring an energetic, hidden S1 nucleus with BLR, and the other, a ``pure S2'', with weak or absent S1 nucleus and a strong, perhaps dominating starburst component. Thus, the simple purely orientation-based unification model is not applicable to all Seyfert galaxies.Comment: 5 pages with embedded figs, ApJ Letters, in pres

    Hidden Double-Peaked Emitters in Seyfert 2 Galaxies

    Full text link
    We present the detection of extremely broad, double-peaked, highly polarized Halpha emission lines in the nuclei of the well-known Seyfert 2 galaxies NGC 2110 and NGC 5252. These hidden broad Halpha emission lines, visible only in scattered light, are shown to display significant variability in strength and profile on timescales of <~ 1 yr. That the broad emission line exhibits variability in polarized flux also suggests that the scattering region must be very compact, possibly confined in a small number of electron clouds <~ 1 lt-yr in size. Our observational constraints place these clouds within ~10 pc of the nucleus with temperatures < 10^6 K and densities ~ 10^7 cm^-3, consistent with a region just outside the obscuring torus between the broad-line region and narrow-line region. These scattering clouds could arise from the clumpy torus itself. These findings and other properties indicate that NGC 2110 and NGC 5252 are the hidden counterparts to the broad-line double-peaked emission-line AGNs, whose examples include Arp 102B and 3C 332.Comment: 11 pages in emulateapj; ApJ vol. 711, 2010 March 10; v2: minor corrections to text for consistency with published versio

    Design an Intelligent System to automatically Tutor the Method for Solving Problems

    Get PDF
    Nowadays, intelligent systems have been applied in many real-word domains. The Intelligent chatbot is an intelligent system, it can interact with the human to tutor how to work some activities. In this work, we design an architecture to build an intelligent chatbot, which can tutor to solve problems, and construct scripts for automatically tutoring. The knowledge base of the intelligent tutoring chatbot is designed by using the requirements of an Intelligent Problem Solver. It is the combination between the knowledge model of relations and operators, and the structures of hint questions and sample problems, which are practical cases. Based on the knowledge base and tutoring scripts, a tutoring engine is designed. The tutoring chatbot plays as an instructor for solving real-world problems. It simulates the working of the instructor to tutor the user for solving problems. By utilizing the knowledge base and reasoning, the architecture of the intelligent chatbot are emerging to apply in the real-world. It is used to build an intelligent chatbot to support the learning of high-school mathematics and a consultant system in public administration. The experimental results show the effectiveness of the proposed method in comparison with the existing systems

    The Design and Operation of The Keck Observatory Archive

    Get PDF
    The Infrared Processing and Analysis Center (IPAC) and the W. M. Keck Observatory (WMKO) operate an archive for the Keck Observatory. At the end of 2013, KOA completed the ingestion of data from all eight active observatory instruments. KOA will continue to ingest all newly obtained observations, at an anticipated volume of 4 TB per year. The data are transmitted electronically from WMKO to IPAC for storage and curation. Access to data is governed by a data use policy, and approximately two-thirds of the data in the archive are public.Comment: 12 pages, 4 figs, 4 tables. Presented at Software and Cyberinfrastructure for Astronomy III, SPIE Astronomical Telescopes + Instrumentation 2014. June 2014, Montreal, Canad
    corecore