556 research outputs found

    Neoplastic transformation of mouse C3H 10T1/2 and Syrian hamster embryo cells by heavy ions

    Get PDF
    C3H 10T1/2 mouse-embryo fibroblasts were used for transformation experiments to study the effectiveness of various heavy ions with energies up to 20 MeV/u and LET values from 170 to 16.000 keV/μm. The transformation frequency per unit absorbed dose decreased with increasing ionization density; at the highest values of LET we found a decrease even of the transformation efficiency per unit fluence. Uranium ions at energies of 5, 9, and 16.3 MeV/u did not induced any transformation. In additional studies piimary Syrian hamster embryo cells (SHE) were exposed to heavy ions in order to characterize cytological and molecular changes which may be correlated with neoplastic transformation. Growth behaviour, chromosomal status, tumorigenicity in nude mice, and expression of oncogenes of transformed cell lines were examined

    Radiation-induced cell transformation: transformation efficiencies of different types of ionizing radiation and molecular changes in radiation transformants and tumor cell lines

    Get PDF
    This study aims to compare the efficiencies of 5.4 keV soft X-rays, alpha-particles, and gamma-rays in transforming C3H 10T1/2 cells and to assess the sequence of cellular and molecular changes during the process of radiation-induced transformation of Syrian hamster embryo (SHE) cells. The somewhat more densely ionizing soft X-rays are more effective than gamma-rays both for cell inactivation and cell transformation. The relative biological effectiveness (RBE) appears to be independent of dose; it is approximately 1.3 for either end point. The RBE of alpha-particles versus gamma-rays, on the other hand, increases with decreasing dose; the dose dependence is somewhat more apparent for cell transformation than for cell inactivation. SHE cells transformed by different types of ionizing radiation and related tumor cell lines isolated from nude mice tumors were found to have a distinct growth advantage compared to primary SHE cells, documented by higher plating efficiencies, shorter doubling times, and higher cloning efficiencies in semisolid medium. Most transformed and tumor cell lines that were investigated have elevated mRNA levels for the H-ras gene, some of them show restriction fragment length polymorphisms of the H-ras gene, and some exhibit a substantially amplified c-myc gene. In a sequence analysis of the Syrian hamster H-ras gene of eight tumor cell lines from radiation transformants, we have not found any mutation in codons 12, 13, 59, 61, nor in the flanking regions of these codons. The transformed and tumor cell lines tend to have lower chromosome numbers than primary SHE cells

    A genetically encoded reporter of synaptic activity in vivo

    Get PDF
    To image synaptic activity within neural circuits, we tethered the genetically encoded calcium indicator (GECI) GCaMP2 to synaptic vesicles by fusion to synaptophysin. The resulting reporter, SyGCaMP2, detected the electrical activity of neurons with two advantages over existing cytoplasmic GECIs: it identified the locations of synapses and had a linear response over a wider range of spike frequencies. Simulations and experimental measurements indicated that linearity arises because SyGCaMP2 samples the brief calcium transient passing through the presynaptic compartment close to voltage-sensitive calcium channels rather than changes in bulk calcium concentration. In vivo imaging in zebrafish demonstrated that SyGCaMP2 can assess electrical activity in conventional synapses of spiking neurons in the optic tectum and graded voltage signals transmitted by ribbon synapses of retinal bipolar cells. Localizing a GECI to synaptic terminals provides a strategy for monitoring activity across large groups of neurons at the level of individual synapses

    Multi-objective optimization of gate location and processing conditions in injection molding using MOEAs: experimental assessment

    Get PDF
    The definition of the gate location in injection molding is one of the most important factors in achieving dimensionally accuracy of the parts. This paper presents an optimization methodology for addressing this problem based on a Multi-objective Evolutionary Algorithm (MOEA). The algorithm adopted here is named Reduced Pareto Set Genetic Algorithm (RPSGA) and was used to create a balanced filling pattern using weld line characterization. The optimization approach proposed in this paper is an integration of evolutionary algorithms with Computer-Aided Engineering (CAE) software (Autodesk Moldflow Plastics software). The performance of the proposed optimization methodology was illustrated with an example consisting in the injection of a rectangular part with a non-symmetrical hole. The numerical results were experimentally assessed. Physical meaning was obtained which guaranteed a successful process optimization.This work was supported by the Portuguese Fundação para a Ciência e Tecnologia under grant SFRH/BD/28479/2006 and IPC/I3N – Institute for Polymers and Composites, University of Minho.info:eu-repo/semantics/publishedVersio
    • …
    corecore