6 research outputs found

    Contextual Bandit Modeling for Dynamic Runtime Control in Computer Systems

    Get PDF
    Modern operating systems and microarchitectures provide a myriad of mechanisms for monitoring and affecting system operation and resource utilization at runtime. Dynamic runtime control of these mechanisms can tailor system operation to the characteristics and behavior of the current workload, resulting in improved performance. However, developing effective models for system control can be challenging. Existing methods often require extensive manual effort, computation time, and domain knowledge to identify relevant low-level performance metrics, relate low-level performance metrics and high-level control decisions to workload performance, and to evaluate the resulting control models. This dissertation develops a general framework, based on the contextual bandit, for describing and learning effective models for runtime system control. Random profiling is used to characterize the relationship between workload behavior, system configuration, and performance. The framework is evaluated in the context of two applications of progressive complexity; first, the selection of paging modes (Shadow Paging, Hardware-Assisted Page) in the Xen virtual machine memory manager; second, the utilization of hardware memory prefetching for multi-core, multi-tenant workloads with cross-core contention for shared memory resources, such as the last-level cache and memory bandwidth. The resulting models for both applications are competitive in comparison to existing runtime control approaches. For paging mode selection, the resulting model provides equivalent performance to the state of the art while substantially reducing the computation requirements of profiling. For hardware memory prefetcher utilization, the resulting models are the first to provide dynamic control for hardware prefetchers using workload statistics. Finally, a correlation-based feature selection method is evaluated for identifying relevant low-level performance metrics related to hardware memory prefetching

    Constructing dynamic policies for paging mode selection

    No full text
    Virtualization technology is a key component for data center management which allows for multiple users and applications to share a single, physical machine. Modern virtual machine monitors utilize both software and hardware-assisted paging for memory virtualization, however neither paging mode is always preferable. Previous studies have shown that dynamic selection, which at runtime selects paging modes according to relevant performance metrics, can be effective in tailoring memory virtualization to program workload. However, these approaches require low-level manual analysis, or depend on prior knowledge of workload characteristics and phasing. We map the problem of dynamic paging mode selection to the contextual bandit, a model for sequential decision making in environments with limited feedback. Utilizing random profiling, which executes a workload while regularly selecting paging modes at random, we construct a paging mode selection policy that dynamically optimizes workload performance given page fault and translation lookaside buffer miss counts. Our approach yields an effective policy, DSP-OFFSET, for the dynamic paging mode selection problem. When trained and evaluated on subsets of the SPEC CPU2006 benchmark suite, DSP-OFFSET achieves speedups up to 44% compared to static paging mode selections, which is equivalent to the performance of the state-of-the-art ASP-SVM model. In addition, DSP-OFFSET requires at most a tenth of the profiling time of ASP-SVM (2.5 hours compared to over 24 hours) to achieve equivalent performance

    Modeling Expert Knowledge in a Heuristic-Based Gin Rummy Agent

    No full text
    We developed a heuristic-based reflex agent, Tonic, for the EAAI 2021 Undergraduate Research Challenge, which tasks competitors to create an autonomous player to play the card game gin rummy. Tonic's heuristics originate in expert knowledge and inform decision making for the three actions comprising a turn: drawing a card, discarding a card, and deciding when to knock. However, because these strategies are based in human intuition, there is often a lack of specificity to directly model them as algorithms. We developed parameterized models describing that intuition based on factors such as the number of turns played and an estimation of the opponent hand. To hone their performance, we conducted both manual analysis and parameter optimization (grid search) using self-play and play against a simple baseline agent. These heuristic models enable Tonic to win against the baseline agent at least 68% of the time

    Machine learning for fine-grained hardware prefetcher control

    No full text
    Modern architectures provide hardware memory prefetching capabilities which can be configured at runtime. While hardware prefetching can provide substantial performance improvements for many programs, prefetching can also increase contention for shared resources such as last-level cache and memory bandwidth. In turn, this contention can degrade performance in multi-core workloads. In this paper, we model fine-grained hardware prefetcher control as a contextual bandit, and propose a framework for learning prefetcher control policies which adjust hardware prefetching usage at runtime according to workload performance behavior. We train our policies on profiling data, wherein hardware memory prefetchers are enabled or disabled randomly at regular intervals over the course of a workload\u27s execution. The learned prefetcher control policies provide up to a 4.3% average performance improvement over a set of memory bandwidth intensive workloads

    Model AI Assignments 2012

    Full text link
    The Model AI Assignments session seeks to gather and disseminate the best assignment designs of the Artificial Intelligence (AI) Education community. Recognizing that assignments form the core of student learning experience, we here present abstracts of three AI assignments from the 2012 session that are easily adoptable, playfully engaging, and flexible for a variety of instructor needs

    Model AI assignments 2012

    No full text
    The Model AI Assignments session seeks to gather and disseminate the best assignment designs of the Artificial Intelligence (AI) Education community. Recognizing that assignments form the core of student learning experience, we here present abstracts of three AI assignments from the 2012 session that are easily adoptable, playfully engaging, and flexible for a variety of instructor needs. Assignment specifications and supporting resources may be found at http://modelai.gettysburg.edu. Copyright © 2012, Association for the Advancement of Artificial Intelligence. All rights reserved
    corecore