51 research outputs found

    Asbestos-Induced Cellular and Molecular Alteration of Immunocompetent Cells and Their Relationship with Chronic Inflammation and Carcinogenesis

    Get PDF
    Asbestos causes lung fibrosis known as asbestosis as well as cancers such as malignant mesothelioma and lung cancer. Asbestos is a mineral silicate containing iron, magnesium, and calcium with a core of SiO2. The immunological effect of silica, SiO2, involves the dysregulation of autoimmunity because of the complications of autoimmune diseases found in silicosis. Asbestos can therefore cause alteration of immunocompetent cells to result in a decline of tumor immunity. Additionally, due to its physical characteristics, asbestos fibers remain in the lung, regional lymph nodes, and the pleural cavity, particularly at the opening sites of lymphatic vessels. Asbestos can induce chronic inflammation in these areas due to the production of reactive oxygen/nitrogen species. As a consequence, immunocompetent cells can have their cellular and molecular features altered by chronic and recurrent encounters with asbestos fibers, and there may be modification by the surrounding inflammation, all of which eventually lead to decreased tumor immunity. In this paper, the brief results of our investigation regarding reduction of tumor immunity of immunocompetent cells exposed to asbestos in vitro are discussed, as are our findings concerned with an investigation of chronic inflammation and analyses of peripheral blood samples derived from patients with pleural plaque and mesothelioma that have been exposed to asbestos

    Cytoarchitecture of mouse and human subventricular zone in developing cerebral neocortex

    Get PDF
    During cerebral neocortical development, excitatory neurons are generated from radial glial cells in the ventricular zone (VZ) or from secondary progenitor cells in the subventricular zone (SVZ); these neurons then migrate toward the pial surface. We have observed that post-mitotic neurons generated directly in the VZ accumulated just above the VZ with a multipolar morphology, while secondary progenitor cells having a long ascending process left the VZ faster than the post-mitotic neurons. Recent observations of human developing neocortex have revealed the existence of radial glia-like progenitors (oRG cells) in the SVZ. This type of progenitor was first thought to be human specific; however, similar cells have also been found in mouse neocortex, and the morphology of these cells resembled that of some of the secondary progenitor cells that we had previously observed, suggesting the existence of a common architecture for the developing neocortex among mammals. In this review, we discuss the nature of the SVZ and its similarities and differences between humans and mice

    Crosstalk between Blood Vessels and Glia during the Central Nervous System Development

    No full text
    The formation of proper blood vessel patterns in the central nervous system (CNS) is crucial to deliver oxygen and nutrient to neurons efficiently. At the same time, neurons must be isolated from the outer blood circulation by a specialized structure, the blood–brain barrier (BBB), to maintain the microenvironment of brain parenchyma for the survival of neurons and proper synaptic transmission. To develop this highly organized structure, glial cells, a major component of the brain, have been reported to play essential roles. In this review, the crosstalk between the macroglia, including astrocytes and oligodendrocytes, and endothelial cells during the development of CNS will be discussed. First, the known roles of astrocytes in neuro-vascular unit and its development, and then, the requirements of astrocytes for BBB development and maintenance are shown. Then, various genetic and cellular studies revealing the roles of astrocytes in the growth of blood vessels by providing a scaffold, including laminins and fibronectin, as well as by secreting trophic factors, including vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) are introduced. Finally, the interactions between oligodendrocyte progenitors and blood vessels are overviewed. Although these studies revealed the necessity for proper communication between glia and endothelial cells for CNS development, our knowledge about the detailed cellular and molecular mechanisms for them is still limited. The questions to be clarified in the future are also discussed

    Roles of Rho small GTPases in the tangentially migrating neurons

    No full text
    Rho small GTPases are members of the Ras superfamily of monomeric 20~30 kDa GTP-binding proteins. These proteins function as molecular switches that regulate various cellular processes such as migration, adhesion and proliferation. Cycling between GDP-bound inactive and GTP-bound active forms is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and GDPdissociation inhibitors (GDIs). Among 20 different mammalian Rho GTPases identified to date, RhoA, Rac1 and Cdc42 have been most extensively investigated; regulation of migration, adhesion and proliferation by these proteins have been well documented in a variety of cell types, including neurons. In neurons, RhoA, Rac1 and Cdc42 are crucial for axon guidance, dendrite formation and spine morphogenesis, where molecular machineries required for cell migration and adhesion play essential roles. Recently, accumulating experimental data indicate the participation of Rho GTPases in neuronal cell migration. To establish the cortical lamination and synapse network formation, highly specialized modes of neuron migration are essential, which include 1) radial migration of excitatory pyramidal neurons along radial glial fibers, 2) tangential migration of GABAergic cortical (inhibitory) interneurons along emerging axon tracts and 3) chain migration of interneurons ensheathed in a glial network, which is observed only in olfactory bulb-directed adult neurogenesis. While roles of Rho GTPases in the radial migration have been well reviewed, knowledge of their functions in tangential migration and chain migration are fragmentary to date. In this review, we focus on the roles of Rho small GTPases and their related molecules in tangential migration, together with the possible application of the electroporation method to analyses for this mode of migration in embryonic and postnatal mouse brain

    Impaired Function of PLEKHG2, a Rho-Guanine Nucleotide-Exchange Factor, Disrupts Corticogenesis in Neurodevelopmental Phenotypes

    No full text
    Homozygosity of the p.Arg204Trp variation in the Pleckstrin homology and RhoGEF domain containing G2 (PLEKHG2) gene, which encodes a Rho family-specific guanine nucleotide-exchange factor, is responsible for microcephaly with intellectual disability. However, the role of PLEKHG2 during neurodevelopment remains unknown. In this study, we analyzed mouse Plekhg2 function during cortical development, both in vitro and in vivo. The p.Arg200Trp variant in mouse (Plekhg2-RW), which corresponds to the p.Arg204Trp variant in humans, showed decreased guanine nucleotide-exchange activity for Rac1, Rac3, and Cdc42. Acute knockdown of Plekhg2 using in utero electroporation-mediated gene transfer did not affect the migration of excitatory neurons during corticogenesis. On the other hand, silencing Plekhg2 expression delayed dendritic arbor formation at postnatal day 7 (P7), perhaps because of impaired Rac/Cdc42 and p21-activated kinase 1 signaling pathways. This phenotype was rescued by expressing an RNAi-resistant version of wildtype Plekhg2, but not of Plekhg2-RW. Axon pathfinding was also impaired in vitro and in vivo in Plekhg2-deficient cortical neurons. At P14, knockdown of Plekhg2 was observed to cause defects in dendritic spine morphology formation. Collectively, these results strongly suggest that PLEKHG2 has essential roles in the maturation of axon, dendrites, and spines. Moreover, impairment of PLEKHG2 function is most likely to cause defects in neuronal functions that lead to neurodevelopmental disorders

    MUNC18–1 gene abnormalities are involved in neurodevelopmental disorders through defective cortical architecture during brain development

    No full text
    Abstract While Munc18–1 interacts with Syntaxin1 and controls the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) complex to regulate presynaptic vesicle fusion in developed neurons, this molecule is likely to be involved in brain development since its gene abnormalities cause early infantile epileptic encephalopathy with suppression-burst (Ohtahara syndrome), neonatal epileptic encephalopathy and other neurodevelopmental disorders. We thus analyzed physiological significance of Munc18–1 during cortical development. Munc18–1-knockdown impaired cortical neuron positioning during mouse corticogenesis. Time-lapse imaging revealed that the mispositioning was attributable to defects in radial migration in the intermediate zone and cortical plate. Notably, Syntaxin1A was critical for radial migration downstream of Munc18–1. As for the underlying mechanism, Munc18–1-knockdown in cortical neurons hampered post-Golgi vesicle trafficking and subsequent vesicle fusion at the plasma membrane in vivo and in vitro, respectively. Notably, Syntaxin1A-silencing did not affect the post-Golgi vesicle trafficking. Taken together, Munc18–1 was suggested to regulate radial migration by modulating not only vesicle fusion at the plasma membrane to distribute various proteins on the cell surface for interaction with radial fibers, but also preceding vesicle transport from Golgi to the plasma membrane. Although knockdown experiments suggested that Syntaxin1A does not participate in the vesicle trafficking, it was supposed to regulate subsequent vesicle fusion under the control of Munc18–1. These observations may shed light on the mechanism governing radial migration of cortical neurons. Disruption of Munc18–1 function may result in the abnormal corticogenesis, leading to neurodevelopmental disorders with MUNC18–1 gene abnormalities
    corecore