392 research outputs found

    Finite volume QCD at fixed topological charge

    Get PDF
    In finite volume the partition function of QCD with a given θ\theta is a sum of different topological sectors with a weight primarily determined by the topological susceptibility. If a physical observable is evaluated only in a fixed topological sector, the result deviates from the true expectation value by an amount proportional to the inverse space-time volume 1/V. Using the saddle point expansion, we derive formulas to express the correction due to the fixed topological charge in terms of a 1/V expansion. Applying this formula, we propose a class of methods to determine the topological susceptibility in QCD from various correlation functions calculated in a fixed topological sector.Comment: 22pages, references adde

    Effects of a Supermassive Black Hole Binary on a Nuclear Gas Disk

    Full text link
    We study influence of a galactic central supermassive black hole (SMBH) binary on gas dynamics and star formation activity in a nuclear gas disk by making three-dimensional Tree+SPH simulations. Due to orbital motions of SMBHs, there are various resonances between gas motion and the SMBH binary motion. We have shown that these resonances create some characteristic structures of gas in the nuclear gas disk, for examples, gas elongated or filament structures, formation of gaseous spiral arms, and small gas disks around SMBHs. In these gaseous dense regions, active star formations are induced. As the result, many star burst regions are formed in the nuclear region.Comment: 19 pages, 11 figures, accepted for publication in Ap

    Classical and quantum radiation from a moving charge in an expanding universe

    Get PDF
    We investigate photon emission from a moving particle in an expanding universe. This process is analogous to the radiation from an accelerated charge in the classical electromagnetic theory. Using the framework of quantum field theory in curved spacetime, we demonstrate that the Wentzel-Kramers-Brillouin (WKB) approximation leads to the Larmor formula for the rate of the radiation energy from a moving charge in an expanding universe. Using exactly solvable models in a radiation-dominated universe and in a Milne universe, we examine the validity of the WKB formula. It is shown that the quantum effect suppresses the radiation energy in comparison with the WKB formula.Comment: 16 pages, JCAP in pres

    Quantum critical Bose gas in the two-dimensional limit in the honeycomb antiferromagnet YbCl3_3 under magnetic fields

    Full text link
    BEC is a quantum phenomenon, where a macroscopic number of bosons occupy the lowest energy state and acquire coherence at low temperatures. It is realized not only in 4^4He and dilute atomic gases, but also in quantum magnets, where hardcore bosons, introduced by the Matsubara-Matsuda transformation of spins, condense. In 3D antiferromagnets, an XY-type long-range ordering (LRO) occurs near a magnetic-field-induced transition to a fully polarized state (FP) and has been successfully described as a BEC in the last few decades. An attractive extension of the BEC in 3D magnets is to make their 2D analogue. For a strictly 2D system, BEC cannot take place due to the presence of a finite density of states at zero energy, and a Berezinskii-Kosterlitz-Thouless (BKT) transition may instead emerge. In a realistic quasi-2D magnet consisting of stacked 2D magnets, a small but finite interlayer coupling stabilizes marginal LRO and BEC, but such that 2D physics, including BKT fluctuations, is still expected to dominate. A few systems were reported to show such 2D-limit BEC, but at very high magnetic fields that are difficult to access. The honeycomb SS = 1/2 Heisenberg antiferromagnet YbCl3_3 with an intra-layer coupling J∼J\sim 5 K exhibits a transition to a FP state at a low in-plane magnetic field of HsH_{\rm s} = 5.93 T. Here, we demonstrate that the LRO right below HsH_{\rm s} is a BEC in the 2D-limit stabilized by an extremely small interlayer coupling J⊥J_{\perp} of 10−5J^{-5}J. At the quantum critical point Hs, we capture 2D-limit quantum fluctuations as the formation of a highly mobile, interacting 2D Bose gas in the dilute limit. A much-reduced effective boson-boson repulsion Ueff as compared with that of a prototypical 3D system indicates the presence of a logarithmic renormalization of interaction unique to 2D.Comment: 24 pages, 12 figure

    Mixing model of Phobos' bulk elemental composition for the determination of its origin: Multivariate analysis of MMX/MEGANE data

    Full text link
    The formation process of the two Martian moons, Phobos and Deimos, is still debated with two main competing hypotheses: the capture of an asteroid or a giant impact onto Mars. In order to reveal their origin, the Martian Moons eXploration (MMX) mission by Japan Aerospace Exploration Agency (JAXA) plans to measure Phobos' elemental composition by a gamma-ray and neutron spectrometer called MEGANE. This study provides a model of Phobos' bulk elemental composition, assuming the two formation hypotheses. Using the mixing model, we established a MEGANE data analysis flow to discriminate between the formation hypotheses by multivariate analysis. The mixing model expresses the composition of Phobos in 6 key lithophile elements that will be measured by MEGANE (Fe, Si, O, Ca, Mg, and Th) as a linear mixing of two mixing components: material from Mars and material from an asteroid as represented by primitive meteorite compositions. The inversion calculation includes consideration of MEGANE's measurement errors (EPE_P) and derives the mixing ratio for a given Phobos composition, based on which the formation hypotheses are judged. For at least 65\% of the modeled compositions, MEGANE measurements will determine the origin uniquely (EPE_P = 30\%), and this increases from 74 to 87\% as EPE_P decreases from 20 to 10\%. Although the discrimination performance depends on EPE_P, the current operation plan for MEGANE predicts an instrument performance for EPE_P of 20--30\%, resulting in ~70\% discrimination between the original hypotheses. MEGANE observations can also enable the determination of the asteroid type of the captured body or the impactor. The addition of other measurements, such as MEGANE's measurements of the volatile element K, as well as observations by other MMX remote sensing instruments, will also contribute to the MMX mission's goal to constrain the origin of Phobos.Comment: 34 pages, 7 figures, accepted for publication in Icaru

    Two-Dimensional Dynamic Fusion for Continuous Authentication

    Full text link
    Continuous authentication has been widely studied to provide high security and usability for mobile devices by continuously monitoring and authenticating users. Recent studies adopt multibiometric fusion for continuous authentication to provide high accuracy even when some of captured biometric data are of a low quality. However, existing continuous fusion approaches are resource-heavy as they rely on all classifiers being activated all the time and may not be suitable for mobile devices. In this paper, we propose a new approach to multibiometric continuous authentication: two-dimensional dynamic fusion. Our key insight is that multibiometric continuous authentication calculates two-dimensional matching scores over classifiers and over time. Based on this, we dynamically select a set of classifiers based on the context in which authentication is taking place, and fuse matching scores by multi-classifier fusion and multi-sample fusion. Through experimental evaluation, we show that our approach provides a better balance between resource usage and accuracy than the existing fusion methods. In particular, we show that our approach provides higher accuracy than the existing methods with the same number of score calculations by adopting multi-sample fusion.Comment: Accepted to IJCB'2

    Si and Fe depletion in Galactic star-forming regions observed by the Spitzer Space Telescope

    Full text link
    We report the results of the mid-infrared spectroscopy of 14 Galactic star-forming regions with the high-resolution modules of the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. We detected [SiII] 35um, [FeII] 26um, and [FeIII] 23um as well as [SIII] 33um and H2 S(0) 28um emission lines. Using the intensity of [NII] 122um or 205um and [OI] 146um or 63um reported by previous observations in four regions, we derived the ionic abundance Si+/N+ and Fe+/N+ in the ionized gas and Si+/O0 and Fe+/O0 in the photodissociation gas. For all the targets, we derived the ionic abundance of Si+/S2+ and Fe2+/S2+ for the ionized gas. Based on photodissociation and HII region models the gas-phase Si and Fe abundance are suggested to be 3-100% and <8% of the solar abundance, respectively, for the ionized gas and 16-100% and 2-22% of the solar abundance, respectively, for the photodissociation region gas. Since the [FeII] 26um and [FeIII] 23um emissions are weak, the high sensitivity of the IRS enables to derive the gas-phase Fe abundance widely in star-forming regions. The derived gas-phase Si abundance is much larger than that in cool interstellar clouds and that of Fe. The present study indicates that 3-100% of Si atoms and <22% of Fe atoms are included in dust grains which are destroyed easily in HII regions, probably by the UV radiation. We discuss possible mechanisms to account for the observed trend; mantles which are photodesorbed by UV photons, organometallic complexes, or small grains.Comment: 43 pages with 7 figures, accepted in Astrophysical Journa

    Simulation of propofol anaesthesia for intracranial decompression using brain hypothermia treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although propofol is commonly used for general anaesthesia of normothermic patients in clinical practice, little information is available in the literature regarding the use of propofol anaesthesia for intracranial decompression using brain hypothermia treatment. A novel propofol anaesthesia scheme is proposed that should promote such clinical application and improve understanding of the principles of using propofol anaesthesia for hypothermic intracranial decompression.</p> <p>Methods</p> <p>Theoretical analysis was carried out using a previously-developed integrative model of the thermoregulatory, hemodynamic and pharmacokinetic subsystems. Propofol kinetics is described using a framework similar to that of this model and combined with the thermoregulation subsystem through the pharmacodynamic relationship between the blood propofol concentration and the thermoregulatory threshold. A propofol anaesthesia scheme for hypothermic intracranial decompression was simulated using the integrative model.</p> <p>Results</p> <p>Compared to the empirical anaesthesia scheme, the proposed anaesthesia scheme can reduce the required propofol dosage by more than 18%.</p> <p>Conclusion</p> <p>The integrative model of the thermoregulatory, hemodynamic and pharmacokinetic subsystems is effective in analyzing the use of propofol anaesthesia for hypothermic intracranial decompression. This propofol infusion scheme appears to be more appropriate for clinical application than the empirical one.</p
    • …
    corecore