14 research outputs found
Exfiltration and infiltration effect on sewage flow and quality: a case study of Hue, Vietnam
Sewage generated in Southeast Asia is typically characterized by small per-capita flow and low concentration. This study investigated the impacts of exfiltration (leaking-out) and infiltration (leaking-in) on sewage flow and quality in Hue, Vietnam. Sewage flow and quality were continuously monitored at the sewer outlet of a residential drainage area for 68 and 82 days during dry and rainy seasons, respectively. Infiltration was estimated based on the least sewage flow before morning. Lithium tracer tests were conducted to estimate the exfiltration ratio. The results indicated that sewage of the target sewer was weaker than the typical weak-strength sewage even on no-rain days of the dry season. Monitoring of electrical conductivity indicated that rainfall persistently decreased the sewage concentration for a maximum duration of 228 h. The estimated infiltration accounted for 11% and 62% of the total sewage inflow to the sewer during dry and rainy seasons, respectively. The tracer test indicated that exfiltration ratios during the dry and rainy seasons were 65.6% and 24.0%, respectively. As a result of developing the water balance, only 23% of the water supplied to the area reached the sewer outlet in the dry season, while 123% flowed in the rainy season. These results demonstrate that exfiltration decreased the sewage flow in the dry season, while infiltration significantly increased the sewage flow and decreased the sewage concentration in the rainy season. To the best of our knowledge, this is the first study to quantify the impacts of infiltration and exfiltration on sewage in Southeast Asia
Impact of Modified Spacer on Flow Pattern in Narrow Spacer-Filled Channels for Spiral-Wound Membrane Modules
A modified spacer, which was constructed with arched filaments and zigzag filaments, was designed to improve vortex shedding and generate a directional change in flow patterns of membrane modules, especially in the vicinity of the feed spacer filament, which is most affected by fouling. A unit cell was investigated by using a three-dimensional computational fluid dynamics (CFD) model for hydrodynamic simulation. The results of CFD simulations were carried out for the fluid flow in order to understand the effect of the modified spacer on vortices to the performance of arched filaments at different distances. From 2D velocity vectors and shear stress contour mixing, the flow pattern and dead zone flushing were depicted. The ratio of low shear stress area to the total area increased with the inlet velocity closed to 20%. The energy consumption with respect to flow direction for the arched filament was 80% lower than that in the zigzag filament. Compared with previous commercial spacers’ simulation, the friction factor was lower when the main flow was normal to the arched filament and the modified friction factor was close to the commercial spacers. The homogenization was realized through the flow pattern created by the modified spacer
CFD Investigation of the Effect of the Feed Spacer on Hydrodynamics in Spiral Wound Membrane Modules
Spacers are designed to create a feed channel, but they are also obstacles to the flow in spiral wound membrane modules. The geometry of the feed spacer influences the flow pattern, which was investigated by using a three-dimensional Computational Fluid Dynamics (CFD) model. For the conventional feed spacer, unavoidable disadvantages were caused by its line contact with the membrane. The pillar-like feed spacer was designed to achieve area contact, which made it possible to enhance the porosity and minimize the adverse effects from the dead zone caused by the transverse filament. Through reductions in the connecting filament’s diameter, the channel porosity reached 0.979. Regarding the maximum porosity, the dimensionless power number was reduced by 47.31% at Reynolds number 150 in comparison with a previously studied commercial spacer. Furthermore, a modified friction factor, as a dimensionless parameter, was employed to investigate the shear stress at the membrane’s surface. At dimensionless power number 106, the enhancement of the modified friction factor increased by approximately 22.27% in comparison with the results of a previous study. Based on the numerical prediction, the homogenization of shear stress distribution, which changed the flow profile near the membrane, was featured through contour plots
A Kinetic Model for Anaerobic Digestion and Biogas Production of Plant Biomass under High Salinity
The aim of this study is to evaluate the anaerobic digestion and biogas production of plant biomass under high salinity by adopting a theoretical and technical approach for saline plant-biomass treatment. Two completely mixed lab-scale mesophilic reactors were operated for 480 days. In one of them, NaCl was added and the sodium ion concentration was maintained at 35.8 g-Na+·L−1, and the organic loading rate was 0.58-COD·L−1·d−1–1.5 g-COD·L−1·d−1; the other added Na2SO4–NaHCO3 and kept the sodium ion concentration at 27.6 g-Na+·L−1 and the organic loading rate at 0.2 g-COD·L−1·d−1–0.8 g-COD·L−1·d−1. The conversion efficiencies of the two systems (COD to methane) were 66% and 54%, respectively. Based on the sulfate-reduction reaction and the existing anaerobic digestion model, a kinetic model comprising 12 types of soluble substrates and 16 types of anaerobic microorganisms was developed. The model was used to simulate the process performance of a continuous anaerobic bioreactor with a mixed liquor suspended solids (MLSS) concentration of 10 g·L−1–40 g·L−1. The results showed that the NaCl system could receive the influent up to a loading rate of 0.16 kg-COD/kg-MLSS·d−1 without significant degradation of the methane conversion at 66%, while the Na2SO4–NaHCO3 system could receive more than 2 kg-COD·kg−1-MLSS·d−1, where 54% of the fed chemical oxygen demand (COD) was converted into methane and another 12% was observed to be sulfide
Biofouling Mitigation by Chloramination during Forward Osmosis Filtration of Wastewater
Pre-concentration is essential for energy and resource recovery from municipal wastewater. The potential of forward osmosis (FO) membranes to pre-concentrate wastewater for subsequent biogas production has been demonstrated, although biofouling has also emerged as a prominent challenge. This study, using a cellulose triacetate FO membrane, shows that chloramination of wastewater in the feed solution at 3?8 mg/L residual monochloramine significantly reduces membrane biofouling. During a 96-h pre-concentration, flux in the chloraminated FO system decreased by only 6% and this flux decline is mostly attributed to the increase in salinity (or osmotic pressure) of the feed due to pre-concentration. In contrast, flux in the non-chloraminated FO system dropped by 35% under the same experimental conditions. When the feed was chloraminated, the number of bacterial particles deposited on the membrane surface was significantly lower compared to a non-chloraminated wastewater feed. This study demonstrated, for the first time, the potential of chloramination to inhibit bacteria growth and consequently biofouling during pre-concentration of wastewater using a FO membrane
Community and Proteomic Analysis of Anaerobic Consortia Converting Tetramethylammonium to Methane
Tetramethylammonium-degrading methanogenic consortia from a complete-mixing suspended sludge (CMSS) and an upflow anaerobic sludge blanket (UASB) reactors were studied using multiple PCR-based molecular techniques and shotgun proteomic approach. The prokaryotic 16S rRNA genes of the consortia were analyzed by quantitative PCR, high-throughput sequencing, and DGGE-cloning methods. The results showed that methanogenic archaea were highly predominant in both reactors but differed markedly according to community structure. Community and proteomic analysis revealed that Methanomethylovorans and Methanosarcina were the major players for the demethylation of methylated substrates and methane formation through the reduction pathway of methyl-S-CoM and possibly, acetyl-CoA synthase/decarbonylase-related pathways. Unlike high dominance of one Methanomethylovorans population in the CMSS reactor, diverse methylotrophic Methanosarcina species inhabited in syntrophy-like association with hydrogenotrophic Methanobacterium in the granular sludge of UASB reactor. The overall findings indicated the reactor-dependent community structures of quaternary amines degradation and provided microbial insight for the improved understanding of engineering application