51 research outputs found

    Interaction of Silver Nanoparticles and Chitin Powder with Different Sizes and Surface Structures: The Correlation with Antimicrobial Activities

    Get PDF
    Silver nanoparticles (Ag NPs) were  nm in diameter, and four <5% deacetylated chitins (A, B, C, and D) differing in size of powder and surface structure properties were used in the study. Chitin/Ag NP composites were synthesized by mixing Ag NP suspensions with each chitin powder at room temperature for 30 min. The Ag NPs were homogenously dispersed and stably adsorbed onto the chitins A and B powders. The resulting chitin/Ag NP composites were brown; darker composites were obtained when larger amounts of Ag NPs were reacted with chitin. Approximately, 26 and 22 μg of Ag NPs maximally adsorbed to 1 mg of chitins A and B, respectively, whereas only 2.5 and 1.5 μg of Ag NPs maximally adsorbed to chitins C and D, respectively. As the bactericidal and antifungal activities of the chitin/Ag NP composites increased with increasing amounts of Ag NPs adsorbed to the chitin, the antimicrobial activity of chitins A and B/Ag NP composites was much higher than that of chitins C and D/Ag NP composites. These results suggest that the particle size and surface structure of the chitin powder critically influence both the adsorption and antimicrobial activity of Ag NPs

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Development of Mucoadhesive Chitosan Derivatives for Use as Submucosal Injections

    No full text
    Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have been used for surgical treatment of early gastric cancer. These endoscopic techniques require proper submucosal injections beneath the tumor to provide a sufficiently high submucosal fluid cushion (SFC) to facilitate clean dissection and resection of the tumor. Until now, the submucosal injection materials developed for endoscopic techniques such as EMR and ESD of tumors have been composed of macromolecules, proteins, or polysaccharides. We have been investigating the use of chitosan, a product that is obtained by the alkaline deacetylation of chitin, the second-most abundant natural polysaccharide. Specifically, we have been studying a photocrosslinked chitosan hydrogel (PCH) and solubilized chitosan derivatives for use as novel submucosal injections for endoscopic techniques. Notably, chitosan derivatives with lactose moieties linked to the amino groups of its glucosamine units can specifically interact with acidic mucopolysaccharides and mucins in submucosa without the need for the incorporation of harmful photoreactive groups nor potentially mutagenic ultraviolet irradiation

    Development of Mucoadhesive Chitosan Derivatives for Use as Submucosal Injections

    No full text
    Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have been used for surgical treatment of early gastric cancer. These endoscopic techniques require proper submucosal injections beneath the tumor to provide a sufficiently high submucosal fluid cushion (SFC) to facilitate clean dissection and resection of the tumor. Until now, the submucosal injection materials developed for endoscopic techniques such as EMR and ESD of tumors have been composed of macromolecules, proteins, or polysaccharides. We have been investigating the use of chitosan, a product that is obtained by the alkaline deacetylation of chitin, the second-most abundant natural polysaccharide. Specifically, we have been studying a photocrosslinked chitosan hydrogel (PCH) and solubilized chitosan derivatives for use as novel submucosal injections for endoscopic techniques. Notably, chitosan derivatives with lactose moieties linked to the amino groups of its glucosamine units can specifically interact with acidic mucopolysaccharides and mucins in submucosa without the need for the incorporation of harmful photoreactive groups nor potentially mutagenic ultraviolet irradiation

    Polyelectrolyte Complexes of Natural Polymers and Their Biomedical Applications

    No full text
    Polyelectrolyte complexes (PECs), composed of natural and biodegradable polymers, (such as positively charged chitosan or protamine and negatively charged glycosaminoglycans (GAGs)) have attracted attention as hydrogels, films, hydrocolloids, and nano-/micro-particles (N/MPs) for biomedical applications. This is due to their biocompatibility and biological activities. These PECs have been used as drug and cell delivery carriers, hemostats, wound dressings, tissue adhesives, and scaffolds for tissue engineering. In addition to their comprehensive review, this review describes our original studies and provides an overview of the characteristics of chitosan-based hydrogel, including photo-cross-linkable chitosan hydrogel and hydrocolloidal PECs, as well as molecular-weight heparin (LH)/positively charged protamine (P) N/MPs. These are generated by electrostatic interactions between negatively charged LH and positively charged P together with their potential biomedical applications

    Excessive Intake of High-Fructose Corn Syrup Drinks Induces Impaired Glucose Tolerance

    No full text
    The number of patients with diabetes was approximately 463 million worldwide in 2019, with almost 57.6% of this population concentrated in Asia. Asians often develop type 2 diabetes (T2D), even if they are underweight and consume a smaller amount of food. Soft drinks contain large amounts of sweeteners, such as high-fructose corn syrup (HFCS). Excessive intake of HFCS drinks is considered to be one of the causes of T2D. In the present study, we investigated the effect of excessive consumption of HFCS–water on glucose tolerance and obesity under conditions of controlled caloric intake using a mouse model. Three-week-old male ICR mice were divided into two groups and given free access to 10% HFCS–water or deionized water. The caloric intake was adjusted to be the same in both groups using a standard rodent diet. The excess HFCS–water intake did not lead to obesity, but led to impaired glucose tolerance (IGT) due to insulin-secretion defect. It affected glucose and fructose metabolism; for example, it decreased the expression of glucokinases, ketohexokinase, and glucose transporter 2 in the pancreas. These results suggest that excessive consumption of HFCS drinks, such as soft drinks, without a proper diet, induces nonobese IGT due to insulin-secretion defect

    Adsorption of Silver Nanoparticles onto Different Surface Structures of Chitin/Chitosan and Correlations with Antimicrobial Activities

    No full text
    Size-controlled spherical silver nanoparticles (Ag NPs) can be simply prepared by autoclaving mixtures of glass powder containing silver with glucose. Moreover, chitins with varying degrees of deacetylation (DDAc &lt; 30%) and chitosan powders and sheets (DDAc &gt; 75%) with varying surface structure properties have been evaluated as Ag NP carriers. Chitin/chitosan-Ag NP composites in powder or sheet form were prepared by mixing Ag NP suspensions with each of the chitin/chitosan-based material at pH 7.3, leading to homogenous dispersion and stable adsorption of Ag NPs onto chitin carriers with nanoscale fiber-like surface structures, and chitosan carriers with nanoscale porous surface structures. Although these chitins exhibited mild antiviral, bactericidal, and antifungal activities, chitin powders with flat/smooth film-like surface structures had limited antimicrobial activities and Ag NP adsorption. The antimicrobial activities of chitin/chitosan-Ag NP composites increased with increasing amounts of adsorbed Ag NPs, suggesting that the surface structures of chitin/chitosan carriers strongly influence adsorption of Ag NPs and antimicrobial activities. These observations indicate that chitin/chitosan-Ag NPs with nanoscale surface structures have potential as antimicrobial biomaterials and anti-infectious wound dressings
    corecore