123 research outputs found

    An active circuit for cancellation of common-mode voltage generated by a PWM inverter

    Get PDF
    This paper proposes an “active common-noise canceler (ACC)” that is capable of eliminating the common-mode voltage produced by a PWM inverter. An emitter follower using complementary transistors and a common-mode transformer are incorporated into the ACC, the design method of which is also presented in detail. A prototype ACC designed and constructed in this paper verifies the viability and effectiveness in a 3.7 kW induction motor drive using an IGBT inverter. Some experimental results show that the ACC makes significant contributions to reducing ground current and conducted EMI. In addition, the ACC can prevent electric shock on a ungrounded motor frame and can suppress motor shaft voltage</p

    Measurement and reduction of EMI radiated by a PWM inverter-fed AC motor drive system

    Get PDF
    This paper presents theoretical and experimental relationships in between radiated electromagnetic noises and common-mode and normal-mode currents, paying attention to an induction motor drive system fed by a voltage-source PWM inverter. A method of reducing both the currents is proposed, based on an equivalent model taking parasitic stray capacitors inside an induction motor into account. Electromagnetic interference (EMI) radiated by a 3.7 kW induction motor drive system is actually measured, complying with the VDE 0871 Class A [3m]. Experimental results verify that the combination of the already proposed common-mode transformer and the normal-mode filters being proposed in this paper is a practically viable and effective way to reduce the EMI resulting from both the common-mode and normal-mode currents</p

    The Molecular Mechanism Underlying Continuous Exercise Training-Induced Adaptive Changes of Lipolysis in White Adipose Cells

    Get PDF
    Physical exercise accelerates the mobilization of free fatty acids from white adipocytes to provide fuel for energy. This happens in several tissues and helps to regulate a whole-body state of metabolism. Under these conditions, the hydrolysis of triacylglycerol (TG) that is found in white adipocytes is known to be augmented via the activation of these lipolytic events, which is referred to as the “lipolytic cascade.” Indeed, evidence has shown that the lipolytic responses in white adipocytes are upregulated by continuous exercise training (ET) through the adaptive changes in molecules that constitute the lipolytic cascade. During the past few decades, many lipolysis-related molecules have been identified. Of note, the discovery of a new lipase, known as adipose triglyceride lipase, has redefined the existing concepts of the hormone-sensitive lipase-dependent hydrolysis of TG in white adipocytes. This review outlines the alterations in the lipolytic molecules of white adipocytes that result from ET, which includes the molecular regulation of TG lipases through the lipolytic cascade

    Anterior Pituitary Progenitor Cells Express Costimulatory Molecule 4Ig-B7-H31

    Get PDF
    Abstract Stem/Progenitor cells in the postnatal pituitary gland are embedded in a marginal cell layer around Rathke’s pouch. However, the nature and behavior of anterior pituitary progenitor cells remain unclear. We established bovine anterior pituitary progenitor cell line (BAPC)-1 from the anterior pituitary gland, which expressed stem/progenitor cell-related genes and several inflammatory cytokines. To characterize and localize these pituitary progenitor cells, we produced a mAb (12B mAb) against BAPC-1. The 12B mAb recognized the 4Ig-B7-H3 molecule, which is a costimulatory molecule and negative regulator in T cell activation. WC1+ γδ T cells in young bovine PBMC express the 4Ig-B7-H3 molecule, but few or no 4Ig-B7-H3-immunoreactive cells are expressed in PBMC in adult cattle. The 12B-immunoreactive cells in the bovine anterior pituitary gland were localized around Rathke’s pouch and expressed IL-18 and MHC class II. However, the number of 12B-immunoreactive cells was lower in adult than in young cattle. BAPC-1 expressed IL-18 and MHC class II, and demonstrated phagocytotic activity. BAPC-1 also had the ability to promote CD25 expression in PBMC after 5 days of coculture, and blocking 4Ig-B7-H3 × 12B mAb enhanced their expression of CD25. In addition, the 12B-immunoreactive cells were observed around the pars tuberalis closely bordering the median eminence and in the blood vessels of the primary portal plexus in the anterior pituitary gland. These results suggest that an established BAPC-1 may originate from these progenitor cells, and that the progenitor cells with 4Ig-B7-H3 may play a critical role in the immunoendocrine network.</jats:p

    The Effects of Exercise Training on Obesity-Induced Dysregulated Expression of Adipokines in White Adipose Tissue

    Get PDF
    Obesity is recognized as a risk factor for lifestyle-related diseases such as type 2 diabetes and cardiovascular disease. White adipose tissue (WAT) is not only a static storage site for energy; it is also a dynamic tissue that is actively involved in metabolic reactions and produces humoral factors, such as leptin and adiponectin, which are collectively referred to as adipokines. Additionally, because there is much evidence that obesity-induced inflammatory changes in WAT, which is caused by dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein 1, contribute to the development of insulin resistance, WAT has attracted special attention as an organ that causes diabetes and other lifestyle-related diseases. Exercise training (TR) not only leads to a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the inflammation-related adipokines in WAT. Therefore, TR is widely used as a tool for preventing and improving lifestyle-related diseases. This review outlines the impact of TR on the expression and secretory response of adipokines in WAT

    Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue

    Get PDF
    Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT

    Serotonin Improves High Fat Diet Induced Obesity in Mice

    Get PDF
    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle

    Current Performance and On-Going Improvements of the 8.2 m Subaru Telescope

    Full text link
    An overview of the current status of the 8.2 m Subaru Telescope constructed and operated at Mauna Kea, Hawaii, by the National Astronomical Observatory of Japan is presented. The basic design concept and the verified performance of the telescope system are described. Also given are the status of the instrument package offered to the astronomical community, the status of operation, and some of the future plans. The status of the telescope reported in a number of SPIE papers as of the summer of 2002 are incorporated with some updates included as of 2004 February. However, readers are encouraged to check the most updated status of the telescope through the home page, http://subarutelescope.org/index.html, and/or the direct contact with the observatory staff.Comment: 18 pages (17 pages in published version), 29 figures (GIF format), This is the version before the galley proo

    Troglitazone Impedes the Oligomerization of Sodium Taurocholate Cotransporting Polypeptide and Entry of Hepatitis B Virus Into Hepatocytes

    Get PDF
    Current anti-hepatitis B virus (HBV) agents, which include nucleos(t)ide analogs and interferons, can significantly suppress HBV infection. However, there are limitations in the therapeutic efficacy of these agents, indicating the need to develop anti-HBV agents with different modes of action. In this study, through a functional cell-based chemical screening, we found that a thiazolidinedione, troglitazone, inhibits HBV infection independently of the compound's ligand activity for peroxisome proliferator-activated receptor Îł (PPARÎł). Analog analysis suggested chemical moiety required for the anti-HBV activity and identified ciglitazone as an analog having higher anti-HBV potency. Whereas, most of the reported HBV entry inhibitors target viral attachment to the cell surface, troglitazone blocked a process subsequent to viral attachment, i.e., internalization of HBV preS1 and its receptor, sodium taurocholate cotransporting polypeptide (NTCP). We also found that NTCP was markedly oligomerized in the presence of HBV preS1, but such NTCP oligomerization was abrogated by treatment with troglitazone, but not with pioglitazone, correlating with inhibition activity to viral internalization. Also, competitive peptides that blocked NTCP oligomerization impeded viral internalization and infection. This work represents the first report identifying small molecules and peptides that specifically inhibit the internalization of HBV. This study is also significant in proposing a possible role for NTCP oligomerization in viral entry, which will shed a light on a new aspect of the cellular mechanisms regulating HBV infection
    • …
    corecore