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Physical exercise accelerates the mobilization of free fatty acids from white adipocytes to provide fuel for energy. This happens in
several tissues and helps to regulate a whole-body state of metabolism. Under these conditions, the hydrolysis of triacylglycerol
(TG) that is found in white adipocytes is known to be augmented via the activation of these lipolytic events, which is referred to as
the “lipolytic cascade.” Indeed, evidence has shown that the lipolytic responses in white adipocytes are upregulated by continuous
exercise training (ET) through the adaptive changes in molecules that constitute the lipolytic cascade. During the past few decades,
many lipolysis-related molecules have been identified. Of note, the discovery of a new lipase, known as adipose triglyceride lipase,
has redefined the existing concepts of the hormone-sensitive lipase-dependent hydrolysis of TG in white adipocytes. This review
outlines the alterations in the lipolytic molecules of white adipocytes that result from ET, which includes the molecular regulation
of TG lipases through the lipolytic cascade.

1. Introduction

Obesity, which results from the energy intake that is in excess
of energy expenditure, is a major global health problem
not only in developed nations (western world) but in low-
and middle-income countries (less developed countries) [1].
White adipocytes are capable of storing excess energy as
triacylglycerol (TG), and they play a key role in energy
metabolism by providing free fatty acids (FFA) and glycerol
through the hydrolysis of TG. The induction of lipolysis, as
well as the inhibition of TG synthesis in white adipocytes, has
been considered a target of therapy for the prevention and
improvement of obesity and its related disorders. Therefore,
clarifying the mechanisms underlying the physical exercise-
induced alteration of lipolytic molecules in white adipocytes
would be useful for establishing a new method for exercise

therapy as well as for understanding the biological meanings
of the lipolytic events themselves.

This elucidation of lipolysis has demonstrated how
ectopic lipid accumulation in skeletal muscle and liver is
closely associated with insulin resistance syndrome and
diabetes [2]. In particular, the flux of muscular fatty acids
is known to play a pivotal role in the development of the
abnormalities of muscle and whole-body energy metabolism
[3], demonstrating that an increase in the consumption of
intramuscular lipids via mitochondrial 𝛽-oxidation would
be beneficial for the prevention of obesity-related disorders.
Indeed, in previous studies, ET has been shown to increase
the metabolic utilization of lipids in both healthy [4] and
obese humans [5] and reduce lipid storage in liver [6]. In
addition, it appears that ET-induced loss of the absolute
content of lipid in white adipocytes per se has a positive
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effect on reducing the levels of the redistribution of lipids in
other tissues through an attenuation of synthetic substrate
content, that is, FFA and glycerol. Thus, ET would be a
highly effective tool for reducing ectopic fat accumulation
and/or increasing the hydrolysis of TG in white adipocytes
themselves.

The molecular mechanisms underlying lipolysis in white
adipocytes are known to be regulated mainly by hierarchical
activation of the lipolytic cascade, which is modified through
both an 𝛼- and 𝛽-AR-cAMP production system, thereby
distally exerting a changeover to the hydrolytic action of
lipases. The stimulation of these two ARs induces opposite
effects: 𝛼-antilipolytic and 𝛽-lipolytic (details are described
in the next section). Of note, it has been shown that complete
activation of lipolysis in white adipocytes is only obtained
when catecholamines were in the presence of an 𝛼

2
-AR

antagonist in human, although there are no changes observed
in rodents [7].This𝛼

2
-antilipolytic component counteracting

the 𝛽-AR-mediated lipolysis has been well known as the
“𝛼
2
/𝛽-adrenergic balance” [8]. On the other hand, Arner and

colleagues [9] have shown that 𝛼
2
-ARs modulate lipolysis at

rest, whereas the 𝛽-ARs modulate lipolysis during physical
exercise, even if 𝛼

2
/𝛽-adrenergic balance exists in human

white adipocytes. In addition, it has been demonstrated that
the number of 𝛼

2
-ARs in jerboa, dormouse, and rat is lower

than that in humans [10], suggesting that catecholamines-
induced lipolysis in rodents, which have low number of 𝛼

2
-

ARs, is regulated through alteration in 𝛽-lipolytic function.
Therefore, the experiments using the jerboa, dormouse, and
rat would be helpful for elucidation of physical exercise-
induced molecular changes in lipolytic molecules in human
white adipocytes, because 𝛽-ARs modulate lipolytic response
during physical exercise in humans [9]. It has been widely
accepted that ET facilitates hormone-stimulated lipolysis in
white adipocytes in mammals [11, 12]. However, the effects
of ET on both the molecular behavior and on the expression
levels of lipolytic molecules in white adipocytes remain to
be missing pieces of the puzzle, although recent evidence
has identified both new lipase and lipolytic cofactors: adi-
pose triglyceride lipase (ATGL) [13], PAT family proteins
[14], comparative gene identification-58 (CGI-58) [15], and
lipotransin [16].

The purpose of this review is to marshal the fact
that exercise training (ET) induced changes in the lipoly-
tic molecules via 𝛽-AR, commonly expressed in white
adipocytes of human and rodents. The introduced results
of this review are mixed with those obtained from human
and experimental animals. However, the consideration of
this viewpoint appears to enable a deepening of understand-
ing lipolytic events in white fat cells by ET, because ET-
induced adaptive changes of lipolytic molecules in white
adipocytes are a universal mechanism inmammalian species.
Together, first, the currently known mechanism(s) of the
lipolytic cascade and the molecular behavior of lipases
and cofactors are outlined. Then, attention is focused on
the ET-induced adaptive changes of lipolytic molecules,
which were mainly obtained from our studies of white
adipocytes.

2. Basic Structure of the Lipolytic
Cascade in White Adipocytes

Lipolysis in white adipocytes is regulated by a multifaceted
phenomenon that is subject primarily to distinct temporal
controls such as hormonal stimulation via catecholamines.
Thehormonal activation of lipolysis in adipocytes ismediated
via a traditional cAMP-dependent signal transduction pro-
cess [17, 18] (Figure 1(a)). The stimulation of G-protein cou-
pled receptors (GPCRs), that is, 𝛽

1
-, 𝛽
2
-, and 𝛽

3
-adrenergic

receptors (𝛽-ARs), induces a conformational change in the
G𝛼 subunit of the heterotrimeric G protein (G𝛼𝛽𝛾) that
leads to GDP release and GTP binding. Activated G𝛼s
leads to the activation of adenylyl cyclase (AC) and to the
production of cAMP. However, the stimulation of GPCRs,
that is, 𝛼

2
-adrenergic receptor [19], adenosine receptor [20],

and prostaglandin E2 receptor [21], which stimulate G𝛼i,
causes the inactivation of AC and reduces the production of
cAMP, resulting in an attenuation of the lipolytic response.
In addition, insulin attenuates intracellular cAMPproduction
through increases in phosphodiesterase-3B (PDE-3B) activ-
ity, which changes cAMP toAMP via the activation of protein
kinase B/AKT (Figure 1(b)). An increased intracellular cAMP
level phosphorylates and activates cAMP-dependent protein
kinase A (PKA) [22, 23] and subsequently phosphorylates
hormone-sensitive lipase (HSL); it is well known that the
phosphorylation of HSL at Ser563, Ser659, and Ser660, by
cAMP-dependent protein kinase (PKA), enhances its enzy-
matic activity and that extracellular-regulated kinase (ERK)
induces the phosphorylation of HSL at Ser600 in 3T3-L1
adipocytes [24], although there are no studies supporting this
result in primary mammalian white adipocytes. Phosphory-
lated HSL activates the hydrolysis of TG in adipocytes [25]
through the translocation of HSL from the cytoplasm to the
surface of lipid droplets [26].On the other hand, an inhibitory
effect of insulin has been reported on HSL activity [27, 28],
and AMP activated protein kinase (AMPK) attenuates HSL
activity through an increase in its phosphorylation at Ser565
[29].

In 2004, three groups independently published the dis-
covery of an enzyme that could hydrolyze TG [13, 30, 31]
and named it adipose triglyceride lipase (ATGL).UnlikeHSL,
ATGL has no specificity for the hydrolysis of MG, cholesterol
esters, or retinyl esters. ATGL does, however, have a substrate
specificity for TG that is 10-fold higher than that for DG
[3], indicating that it selectively acts as the first step in TG
hydrolysis and that its hydrolytic function is not restricted
to the catabolism of lipid droplets [32] in adipose tissue.
Moreover, two phosphorylation sites of ATGL, at Ser404
and Ser428, have been identified in the C-terminal region
in humans [13, 33]. In contrast with HSL, however, the
functional roles of enzyme phosphorylation, as it involves
protein kinases, remain unknown. Together, both HSL and
ATGL act hierarchically to regulate TG hydrolysis: ATGL
initiates lipolysis by removing the first FA from TG to, in
turn, produce DG; HSL generates an additional FA from
DG and MG to produce glycerol (Figure 2). In these events,
the phosphorylation of lipases plays a central role in the
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Figure 1: Lipolysis in white adipocytes is mainly regulated through GPCRs that localize on the plasma membrane. (a) Under stimulatory
conditions, ligands binding to GPCRs, that is, 𝛽

1
-, 𝛽
2
-, and 𝛽

3
-AR, activate AC through the action of G𝛼s, resulting in an increase in

PKA activity through the accumulation of intracellular cAMP, and, in turn, PKA phosphorylates and activates HSL. Phosphorylated HSL
translocates on the lipid droplet and thereby activates lipolysis. (b) On the other hand, ligands binding to GPCRs, that is, 𝛼

2
-AR, adenosine-

R, and nicotinic acid-R, attenuate lipolysis via a reduction in cAMP production. Insulin receptor signaling also inhibits lipolytic response via
the activation of PDH-3B, a cAMP-degrading enzyme.
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Figure 2: ATGL acts exclusively on the hydrolysis of TG. A major component of HSL activity depends on the generation of DG, a substrate
from the action of ATGL. Finally, MGL acts to liberate glycerol and the final FFA.

regulation of enzyme activity and is closely associated with
the catabolism of adipocytes.

3. Regulation of Lipolysis via the Coordinated
Action of Lipases and Cofactors

The discovery of perilipin 1 provided proof of cofactors
which exist in the cytoplasm and on the lipid droplet
surface [34]. Perilipin 1 is the founding member of the
perilipin, adipophilin, and TIP47 family (referred to as

the PAT/perilipin family protein) of lipid droplet-coated
proteins [35] and is expressed mostly in white adipose
tissue, where it coats lipid droplets, and in steroidogenic
tissue [36]. Perilipin 1 has as many as six phosphorylation
sites (Ser81, Ser222, Ser276, Ser433, Ser492, and Ser517) in
adipocytes by PKA [37–40]. Several studies have reported
that perilipin 1 is multifunctional and is capable of reducing
basal lipolysis via combining HSL with lipid droplets to
form a barrier [41] and promotes the lipolysis movement
of perilipin 1 away from fat droplets [42] through lipase-
dependent and -independent mechanisms [43]. Moreover,
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Figure 3: Under basal and inactivated conditions, perilipin 1 and CGI-58 form a complex on the surface of lipid droplets (a). On the other
hand, PKA activation leads to the phosphorylation of both HSL and perilipin 1, resulting in HSL and perilipin 1 forming a complex on the
surface of lipid droplets. Released CGI-58 from phosphorylated perilipin 1 binds to ATGL to induce lipolysis (b).

the CGI-58, also known as 𝛼/𝛽 hydrolase domain-containing
protein 5 (ABHD5), was found to increase the TG hydrolase
activity of ATGL owing to a direct interaction with ATGL
proteins [44]. CGI-58 also has the ability to be associatedwith
perilipin 1 [35, 45–47], demonstrating that the localizations
of both perilipin 1 and CGI-58 are centrally involved in the
organization and regulation of lipolytic effector interactions
in both basal and hormone-stimulated states.The conceptual
consensus schema is described below (Figure 3). Under basal
conditions, CGI-58 localizes on the lipid droplet surfaceswith
perilipin 1, although ATGL exists predominantly within the
cytoplasm [48], resulting in an attenuation of the interaction
of ATGL with CGI-58 [49]. HSL is also located entirely in
the cytoplasm, where it is nonphosphorylated and removed
from lipid droplets, thereby reducing the hydrolysis activity
of TG in adipocytes [36]. In contrast, hormonal activation of
𝛽-ARs-PKA provokes the association of CGI-58 with ATGL
in fragmented lipid droplets following the rapid, within min-
utes, dissociation of PKA-phosphorylated perilipin 1 at Ser517
and CGI-58 [38, 48]. During that time, PKA promotes both
phosphorylation and translocation of phosphorylated HSL
at Ser659 and Ser660 from the cytoplasm to lipid droplets
[50], and, in turn, perilipin 1 acts as a scaffold protein to bind
HSL with lipid droplets [34], which results in an inducement
of the maximal lipolytic response. Thus, serial modification
events of lipolytic molecules, which support the localization
of lipases, would play a critical role in the adaptive alteration
of the lipolytic response in white adipocytes by physical
exercise.

4. Effect of ET on the Number of 𝛽-ARs,
Which Is the First Step in the Mobilization
of the Lipolytic Cascade

As mentioned in the above sections, stimulation of the 𝛽-
ARs-AC system in white adipocytes results in a change in

intracellular cAMP production and in the subsequent acti-
vation of PKA.Thus, an increase in the number of the 𝛽-ARs,
which are expressed on the cell surfaces, would be expected to
play a key role in the upregulation of lipolysis that is caused
by ET. In ET, however, there is a small amount of evidence
that indicates no change in the number of 𝛽-ARs [51, 52],
which are measured by hydrophobic ligands, compared to
the primary adipocytes of sedentary control rats. Moreover,
investigation using hydrophilic ligands has demonstrated that
the level of 𝛽-ARs on cell surfaces is significantly decreased
due to ET in rat [53], indicating that the level of 𝛽-ARs by
ET, at least in part, might be internalized into the cytoplasm
rather than being increased on the cell surfaces. In addition,
in rat, it has been shown that enhancement of 𝛽-ARs-AC
coupling is observed in white adipocytes from ET [54, 55].
These results indicate that an ET-induced increase in lipolysis
is not dependent on the number of 𝛽-ARs but rather the
enhancement of the association efficiency of both 𝛽-ARs and
Gs proteins. Thus, an ET-induced enhancement of lipolysis
might be mediated by an adaptive alteration in post 𝛽-ARs.

Under ET, repeat exposure of high levels of plasma
catecholamines during bouts of daily exercise might be likely
to trigger downregulation and change the localization of
𝛽-ARs into the cytoplasm in white adipocytes. Some very
elegant studies conducted by Shenoy and coworkers [56]
have shown that 𝛽

2
-ARs have a functional turnover cycle

from the cellular surface to the cytosol via ubiquitination
in a catecholamine dose-dependent manner. Of note, the
adaptive change of adipocytes in response to ET appears
to be the result of the integrative effect of bouts of acute
exercise. Therefore, an understanding of the acute exercise-
induced trafficking events of 𝛽

2
-AR would support the

clarification of adaptive moderation of 𝛽-ARs by ET. In rat
primary epididymal adipocytes, our results obtained from
acute exercise demonstrated that localization of 𝛽

2
-ARs on

the cell surface was upregulated at least 3 hours after exercise
with reduced interaction of 𝛽-arrestin 2 and 𝛽

2
-AR, whereas

it returned to the sedentary control levels 24 hours after
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𝛽
2
-ARs, which is caused by daily repeated bouts of acute exercise.

exercise [57] (Figure 4). Loss of the combination of𝛽-arrestin
2 and 𝛽

2
-AR resulted in a reduction in 𝛽

2
-AR ubiquitination,

which thereby attenuated the internalization of 𝛽
2
-ARs into

the cytoplasm. However, internalized 𝛽
2
-ARs were capable of

quick recycling on the cell surface [58]. Together, the turnover
of 𝛽
2
-ARs that was induced by every single bout of exercise

might have been the result of the reduced levels of 𝛽
2
-ARs on

the cell surfaces by ET, because, in this instance, there were
no changes in the total amount of 𝛽-AR [51–53] (Figure 4).

5. Adaptive Alteration in G-Proteins by
Habitual Physical Exercise

It is known that both Gs protein 𝛼 subunit (Gs𝛼) and Gi
protein 𝛼 subunit (Gi𝛼), which are dissociated from 𝛽- and
𝛾-subunits by stimulation of 𝛼- and 𝛽-ARs, play key roles
in the synergistic action of AC in white adipocytes. ET
reportedly provoked a significant increase in AC activity
of rat white adipocytes [59], accompanied by a decrease
in the levels of Gi𝛼 protein, but caused no change in the
levels of Gs𝛼 proteins in rat white adipocytes [60]. Moreover,
ET significantly decreased the levels of Gi𝛼2 protein, which
predominantly inhibits AC activity, in rat white adipocytes
[61] and in rat pancreatic islets [62]. These results indicate
that ET positively regulates the signal transduction systems
through the inhibition of Gi𝛼 function in adipose cells, which
leads to the activation of AC. However, the mechanism(s)
by which ET induces the downregulation of Gi𝛼2 protein is
unknown. In our previous study, acute exercise transiently
downregulated the levels ofGi𝛼2 proteins at least 3 hours after
exercise via ubiquitin-proteasomal degradationmachinery in
rat white adipocytes [63] (Figure 5), suggesting the possibil-
ity that the downregulation of Gi𝛼2 protein by ET might
also be associated with acute exercise-induced proteolysis
action, because ET is often defined by a repeat of bouts of
acute exercise. Indeed, it is known that promotion of the
ubiquitin-proteasome system is dependent on intracellular
ATP, which is produced in several cells during exercise

[9]. Moreover, the levels of MuRF-1, a muscle-specific E3
ligase, are reportedly reduced by ET in chronic heart failure
patients [64]. Thus, in ET, the conspicuous effect of exercise
on cellular energy production and selective transcriptional
systems might be one of the triggers for the downregulation
of Gi𝛼2 proteins in white adipocytes (Figure 5). Such a
conclusion, however, requires further study.

6. Manipulation of Lipolytic Molecules by
Physical Exercise to Supply Energy

An understanding of the regulatory mechanisms underlying
basal and hormone-stimulated lipolysis in adipocytes has
evolved in recent years. However, little is known about the
effect of ET on the molecular behavior of lipolytic proteins,
that is, perilipin 1 and CGI-58, in white adipocytes. In rat,
ET studies have shown no change in intracellular cAMP
accumulation in white adipocytes compared with a sedentary
control [51], suggesting the possibility that the molecular
behavior of lipolytic proteins, which occur in the cell, plays
a key role in the HE-induced enhancement of the lipolytic
response. Indeed, our previous study indicated that white
adipocytes obtained from ET rat enhance the levels of cat-
alytic subunits of PKA proteins and PKA-anchoring protein
150 (AKAP150), which promotes the binding of PKA and its
substrate, with activation of both PKA and HSL in the lipid
droplet fraction of adipocyte homogenate [65]. These results
would explain the phenomena whereby the ET-induced
anchoring of AKAP150 to PKA enhances the magnitude of
cAMP signaling in white adipocytes, even if accumulations
of intracellular cAMP fail to increase as a result of ET. In
rat, levels of HSL in adipocytes reportedly are upregulated
by ET despite obesity [12] or normal circumstances in
an individual [66], suggesting that the AKAP150-mediated
enhancing action of PKA easily provokes the interaction of
PKA with HSL, thereby activating the phosphorylation of
HSL in cytoplasmic space. However, in rat white adipocytes,
the phosphorylation of HSL by acute exercise is accompanied
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by an increase in intracellular cAMP production [63]. Thus,
the functional alteration inAKAP150might play a critical role
in the adaptive augmentation of lipolytic responses by ET in
white adipocytes.

Alsted and colleagues were the first to report that levels
of ATGL protein are significantly increased in human skeletal
muscle by ET [67], although adipose tissue is used to identify
ATGL [13]. It is noteworthy that the deletion of ATGL in
mice impairs exercise performance [68] and that ATGL
knockout mice show no increase in circulating FFA levels
during exercise [69], suggesting that a molecular change
in ATGL, as well as HSL, plays a role in supplying FFA
from white adipocytes during physical exercise as a fuel for
metabolism. To date, however, little is known about the effect
of ET on themolecular changes of ATGL in white adipocytes.
Recently, in rat, we demonstrated that mRNA, protein levels
of ATGL, andHSL proteins all are upregulated by ET and that
DNA-binding activities of peroxisomeproliferation-activated
receptor-𝛾 2 (PPAR-𝛾2) are closely associated with the ET-
induced upregulation of ATGL [70]. Under these conditions,
the binding of CGI-58 toATGLwas significantly increased on
the lipid droplets with dissociations of CGI-58 and perilipin
1. These results indicate that the ET-induced acceleration of
lipolytic responses is, at least in part, mediated by the hyper-
function of newly synthesized protein via the transcriptional
activation of ATGL. Meanwhile, there is no evidence as to
whether PKA-mediated phosphorylation ofATGL is involved
in the hydrolysis of TG by ET, although at least one previous
study has demonstrated that the increased phosphorylation
of ATGL at Ser406, a PKA-mediated phosphorylation site,
during both fasting and moderate single bouts of exercise is
associatedwith an elevated rate of lipolysis inmice [71]. In our
pilot study, ET showed higher levels of phosphorylated ATGL
compared with the sedentary control in rat epididymal white
adipocytes (unpublished data). These results suggest the
possibility that ET might cause a phosphorylation-provoked
conformational change in the protein structures of ATGL,
which might result in a hypercombination of CGI-58 on lipid
droplets [70], thereby enhancing the lipolytic responses in

rat white adipocytes. In conclusion, several results have indi-
cated that localization and/or phosphorylation of lipolytic
molecules, such as perilipin 1, CGI-58, HSL, and ATGL, has
a central function in the ET-induced adaptive alteration of
lipolysis in white adipocytes and that the AKAP150-mediated
activation of PKA also plays a key role in this mechanism
(Figure 6).

7. Conclusion

It is well documented that exercise of moderate intensity
accelerates the lipolytic responses in human white adipocytes
[72–74]. In this review, studies showing both ET and acute
exercise of light to moderate intensity [50–52, 56, 58–63,
65, 66, 70] indicated that moderate intensity of ET clearly
provokes an enhancement of lipolysis in white adipocytes
with an orchestral alteration in lipolytic molecules in a
positive manner. However, little is known about the high-
intensity exercise-induced behavior of lipolytic molecules in
white adipocytes so far. Further studies are required to clarify
this point.

A clarification of HE-induced molecular changes in a
lipolytic cascade would apply not only to the prevention
of obesity but also to the elucidation of a methodology
for advances in exercise effectiveness. However, in white
adipocytes no complete evidence exists to explain the mech-
anism(s) underlying the HE-induced adaptive changes in
lipolysis. In particular, there are no new insights into the
alterations inGprotein-coupled receptors, nor into the family
of G-proteins and related modification events brought about
by HE, although a few results obtained in our studies have
shown that ubiquitin-proteasome system plays a role in acute
exercise-mediated amplification of the lipolytic cascade via
the expression levels of both 𝛽

2
-AR and Gi𝛼2 proteins. How-

ever, it is noteworthy that more than 200 genes that regulate
lipid droplet morphology have been identified in Drosophila
[75], suggesting that new molecules, which are unknown in
mammalian species, would be related to the regulation of
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lipolytic events in white adipocytes with or without exercise.
In the near future, the search for new molecules with the aim
of elucidating their functions in an exercise-specific manner
will shed new light on the calculations of a highly effective
lipolytic system of exercise and will enhance the biological
understanding of white adipocytes as a “vehicle” for the
storage and supply of energy.
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