75 research outputs found
Impurity-Induced Antiferromagnetic Ordering in the Spin Gap System TlCuCl_3
The magnetization measurements have been performed on the doped spin gap
system TlCu_{1-x}Mg_xCl_3 with x <= 0.025. The parent compound TlCuCl_3 is a
three-dimensional coupled spin dimer system with the excitation gap Delta/k_B =
7.7 K. The impurity-induced antiferromagnetic ordering was clearly observed.
The easy axis lies in the (0,1,0) plane. It was found that the transition
temperature increases with increasing Mg^{2+} concentration x, while the
spin-flop transition field is almost independent of x. The magnetization curve
suggests that the impurity-induced antiferromagnetic ordering coexists with the
spin gap for x <= 0.017.Comment: 5 pages, 6 figures, revtex styl
氷縁に出現する微細藻類群集
第6回極域科学シンポジウム[OB] 極域生物圏11月16日(月) 国立極地研究所1階交流アトリウ
Heart Failure-Inducible Gene Therapy Targeting Protein Phosphatase 1 Prevents Progressive Left Ventricular Remodeling
BACKGROUND: The targeting of Ca(2+) cycling has emerged as a potential therapy for the treatment of severe heart failure. These approaches include gene therapy directed at overexpressing sarcoplasmic reticulum (SR) Ca(2+) ATPase, or ablation of phospholamban (PLN) and associated protein phosphatase 1 (PP1) protein complexes. We previously reported that PP1β, one of the PP1 catalytic subunits, predominantly suppresses Ca(2+) uptake in the SR among the three PP1 isoforms, thereby contributing to Ca(2+) downregulation in failing hearts. In the present study, we investigated whether heart-failure-inducible PP1β-inhibition by adeno-associated viral-9 (AAV9) vector mediated gene therapy is beneficial for preventing disease progression in genetic cardiomyopathic mice. METHODS: We created an adeno-associated virus 9 (AAV9) vector encoding PP1β short-hairpin RNA (shRNA) or negative control (NC) shRNA. A heart failure inducible gene expression system was employed using the B-type natriuretic protein (BNP) promoter conjugated to emerald-green fluorescence protein (EmGFP) and the shRNA sequence. AAV9 vectors (AAV9-BNP-EmGFP-PP1βshRNA and AAV9-BNP-EmGFP-NCshRNA) were injected into the tail vein (2×10(11) GC/mouse) of muscle LIM protein deficient mice (MLPKO), followed by serial analysis of echocardiography, hemodynamic measurement, biochemical and histological analysis at 3 months. RESULTS: In the MLPKO mice, BNP promoter activity was shown to be increased by detecting both EmGFP expression and the induced reduction of PP1β by 25% in the myocardium. Inducible PP1βshRNA delivery preferentially ameliorated left ventricular diastolic function and mitigated adverse ventricular remodeling. PLN phosphorylation was significantly augmented in the AAV9-BNP-EmGFP-PP1βshRNA injected hearts compared with the AAV9-BNP-EmGFP-NCshRNA group. Furthermore, BNP production was reduced, and cardiac interstitial fibrosis was abrogated at 3 months. CONCLUSION: Heart failure-inducible molecular targeting of PP1β has potential as a novel therapeutic strategy for heart failure
Superconductivity and physical properties of Ba24Si100 determined from electric transport, specific-heat capacity, and magnetic susceptibility measurements
Both Ba24Si100 and Ba24Ge100 with crystallographically identical structure are found to be superconducting at 1.4 and 0.27 K, respectively. Physical properties of this superconductor Ba24Si100 are studied by electric transport, specific heat capacity, and magnetic susceptibility measurements. The density of states at the Fermi level NEF=0.148 states eV-1(Siatom)-1 and a distinct jump of Cp at the superconducting transition temperature ΔCp=0.272JK-1mol-1 are obtained. An exponential fit of Cp below the superconducting states gives an energy gap 2Δ=0.423meV and shows that this is a superconductor having s-wave character or isotropic energy gap. On the basis of our experimental data other important physical parameters are also derived
Methamphetamine induces endoplasmic reticulum stress related gene CHOP/Gadd153/ddit3 in dopaminergic cells
We examined the toxicity of methamphetamine and dopamine in CATH.a cells, which were derived from mouse dopamine-producing neural cells in the central nervous system. Use of the quantitative real-time polymerase chain reaction revealed that transcripts of the endoplasmic reticulum stress related gene (CHOP/Gadd153/ddit3) were considerably induced at 24–48 h after methamphetamine administration (but only under apoptotic conditions), whereas dopamine slightly induced CHOP/Gadd153/ddit3 transcripts at an early stage. We also found that dopamine and methamphetamine weakly induced transcripts for the glucose-regulated protein 78 gene (Grp78/Bip) at the early stage. Analysis by immunofluorescence microscopy demonstrated an increase of CHOP/Gadd153/ddit3 and Grp78/Bip proteins at 24 h after methamphetamine administration. Treatment of CATH.a cells with methamphetamine caused a re-distribution of dopamine inside the cells, which mimicked the presynaptic activity of neurons with cell bodies located in the ventral tegmental area or the substantia nigra. Thus, we have demonstrated the existence of endoplasmic reticulum stress in a model of presynaptic dopaminergic neurons for the first time. Together with the recent evidence suggesting the importance of presynaptic toxicity, our findings provide new insights into the mechanisms of dopamine toxicity, which might represent one of the most important mechanisms of methamphetamine toxicity and addiction
Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension
OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo
- …