328 research outputs found

    In Vivo Simultaneous Imaging of Vascular Pool and Hypoxia with a HT-29 Tumor Model: the Application of Dual-Isotope SPECT/PET/CT

    Get PDF
    Investigation of vascularity and hypoxia in tumors is important in understanding cancer biology to developthe therapeutic strategies in cancer treatment. ------------------------------------------------------------------------ *Corresponding author . Recently, an imaging technology with the VECTor SPECT/PET/CT small-animal scanner (MILabs) has been developed to obtain simultaneous images usingtwodifferent tracers labeled with SPECT and PET nuclides, respectively. In this study, we developed amethod to simultaneously visualize vascularity and hypoxia witha human colon carcinoma HT-29tumor-bearing mouse model with 99mTc-labeled human serum albumin (99mTc-HSA) to detect blood pool, and 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM) to detect the over-reduced conditionsunder hypoxia, by applying this SPECT/PET/CT technology.Prior to the in vivo experiments, a phantom study was conducted to confirmquantitativity of the 99mTc/64Cu dual-isotope imaging with the SPECT/PET/CT system,by comparing radioactivities detected by SPECT/PET/CT system and those of standards under the conditions of wide range of radioactivities and various content ratios, in our settings. An in vivoimaging study was conducted with HT-29 tumor-bearing mice. Both 64Cu-ATSM (37 MBq) and 99mTc-HSA (18.5 MBq) were intravenously injected into a mouse (n = 4) at 1 h and 10 min, respectively, before scanning for 20 min; the 99mTc/64Cu dual-isotope SPECT/PET/CT images were then obtained.The phantom study demonstrated that this system has high quantitativity, even when 2 isotopes co-existed and the content ratio was changed over a wide range, indicating the feasibility for in vivo experiments. In vivoSPECT/PET/CT imaging with 64Cu-ATSM and 99mTc-HSA visualized the distribution of each probe and showed that 64Cu-ATSM high-uptake regions barely overlapped with 99mTc-HSA high-uptake regions within HT-29 tumors.We developed a method to simultaneously visualize vascularity and hypoxia within HT-29tumors using in vivodual-isotope SPECT/PET/CT imaging. This methodology would be useful for studies oncancer biology with mouse tumor models anddevelopment of the treatment strategies against cancer. Examination of vascularity and hypoxia within in vivotumors is important in understanding the biology of cancer anddevelopmentof the therapeutic strategies in cancer treatment. For hypervascular tumors, antiangiogenic therapy and antivascular therapy are promising approaches. For antiangiogenic therapy, the anti-vascular endothelial growth factor antibody bevacizumab is now clinically used worldwide [1-4], and for antivascular therapy, a clinical trial withcombrestatin A4 phosphate is conducted[5]. For hypovascular tumor, which is usually associated with hypoxia, intensive treatment is necessary, since tumor hypoxia is reportedly resistant to chemotherapy and radiotherapy [6-8]. In recent years, several therapeutic methods have been proposedto damage to hypoxic regions within tumors, such as intensity modulated radiation therapy with hypoxia positron emission tomography (PET) imaging [9, 10], and carbon-ion radiotherapy, which is able to damage tumor cells even in the absence of oxygen by high linear energy transfer beam [11, 12]. However, considering the difficulty of cancer radical cure at the present moment, more effective drugs and treatment methods for antiangiogenic, antivascular, and antihypoxia therapies need to be developed. In addition, combinations of these therapies would be effective approaches, since they can attacktumor vascularity and hypoxia closely linked each other.However, it is still difficult to observe tumor vascularity and hypoxia both coincidently and concisely in in vivo tumor-bearing mouse model. Recently, a technology of single-photon emission computed tomography/positron emission tomography/computed tomography(SPECT/PET/CT) imaging with the VECTor small-animal scanner, launched from MILabs (Utrecht, Netherlands), has been reportedto obtain truly simultaneous images with twotracers labeled with SPECT and PET nuclides, respectively. Conventionally, dual-isotope imaging studies with SPECT and PET have been performed by obtaining each image independently with 2 separate systems [13, 14]. In contrast, the VECTor system is equipped with a clustered pinhole collimator, which dramatically reduces pinhole-edge penetration of high-energy annihilation ?-photons from PET nuclides and enables it to detect high-energy ?-photons derived from PET nuclides, in a manner similar to SPECT nuclides, and to obtain high-resolution images from positron emitters and single-photon emitters at the same time by separating the images based on the photon energy [15, 16]. Thus, this system has a novel concept to make images of PET nuclides, compared to the typical PET system, which measures the coincidence of annihilation ?-photons. Goorden et al. have reported that this system shows high spatial resolution, with 0.8 mm for PET nuclides and 0.5 mm for SPECT nuclides [15]. Miwa et al. also confirmed its performance in simultaneous detection of 99mTc and 18F using this system [17]. In this study, we developed a methodology to easily observe intratumoralvascularity and hypoxia in a simultaneous manner,by applyingthis SPECT/PET/CT technology. We used 99mTc-labeled human serum albumin (99mTc-HSA) labeled with a SPECT nuclide 99mTc (half-life = 6.0 h; 140 keV ?-ray: 89%) to visualize tumor vascularity by detecting blood pool [18]. The 99mTc-HSAhas been reported to detect tumor blood pool in many types of cancer, including colon cancer, renal cell carcinoma, and liver tumor in both preclinical and clinical studies [19-21]. We also used 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM), labeled with a PET nuclide 64Cu (half-life = 12.7 h; ?+-decay: 17.4%; ??-decay: 38.5%; and electron capture: 43%) [22], to detect tumor hypoxia. The Cu-ATSM, labeled with Cu radioisotopes, such as 60Cu, 62Cu, and 64Cu, has been developed as an imaging agent targeting hypoxic regions in tumors for use with PET [23-26].Many studies have demonstrated that Cu-ATSM accumulation is associated with hypoxic conditions of tumor in vitro and in vivo[26-29]. The mechanism of radiolabeled Cu-ATSM accumulation has been studied: Cu-ATSM has small molecular sizeand high membrane permeability, and thus rapidly diffuses into cells and is reduced and trapped within cells under highly reduced intracellular conditions such as hypoxia [24, 29-31]. A clinical study with 62Cu-ATSM demonstrated that high levels of hypoxia-inducible factor-1? (HIF-1?) expression were found in Cu-ATSM uptake regions in the tumors of patients with glioma [32]. In this study, we performed simultaneous in vivo imaging using a SPECT/PET/CT with 99mTc-HSA and 64Cu-ATSM for detecting tumor vascularity and hypoxia with a HT-29 tumor-bearing mouse model

    Mechanisms of glutathione-conjugate efflux from the brain into blood: Involvement of multiple transporters in the course

    No full text
    Accumulation of detrimental glutathione-conjugated metabolites in the brain potentially causes neurological disorders, and must therefore be exported from the brain. However, in vivo mechanisms of glutathione-conjugates efflux from the brain remain unknown. We investigated the involvement of transporters in glutathione-conjugates efflux using 6-bromo-7-[11C]methylpurine ([11C]1), which enters the brain and is converted into its glutathione conjugate, S-(7-[11C]methylpurin-6-yl)glutathione ([11C]2). In mice of control and knockout of P-glycoprotein/breast cancer resistance protein and multidrug resistance-associated protein 2 ([Mrp2]−/−), [11C]2 formed in the brain was rapidly cleared, with no significant difference in efflux rate. In contrast, [11C]2 formed in the brain of Mrp1−/− mice was slowly cleared, whereas [11C]2 microinjected into the brain of control and Mrp1−/− mice was 75% cleared within 60 min, with no significant difference in efflux rate. These suggest that Mrp1 contributes to [11C]2 efflux across cell membranes, but not BBB. Efflux rate of [11C]2 formed in the brain was significantly lower in Mrp4−/− and organic anion transporter 3 (Oat3)−/− mice compared with control mice. In conclusion, Mrp1, Oat3, and Mrp4 mediate [11C]2 efflux from the brain. Mrp1 may contribute to [11C]2 efflux from brain parenchymal cells, while extracellular [11C]2 is likely cleared across the BBB, partly by Oat3 and Mrp4

    Evaluation of kinetics of acetovanillone in the brain by PET

    No full text
    Objectives: NADPH oxidase produces reactive oxygen species (ROS) in physiological processes, but overproduction of ROS by this enzyme leads to oxidative stress, which contributes to the pathogenesis of various brain diseases. Acetovanillone is considered an anti-inflammatory and antioxidant agent, mainly due to blocking NADPH oxidase, and has thus been examined in many animal models of brain diseases. In such studies, understanding the brain kinetics would be important for interpreting the efficacy of acetovanillone in vivo. However, very limited work has been done on in vivo kinetics of acetovanillone in the brain. In this study, we therefore examined the brain kinetics of acetovanillone using [11C]acetovanillone and PET.Methods: [11C]acetovanillone was synthesized by the reaction of 3\u27,4\u27-dihydroxyacetophenone with [11C]methyl iodide in dimethylformamide. In vivo PET studies were performed on mice, which received intraperitoneal (i.p.) administration of [11C]acetovanillone. The brain tissue of mice received i.p. administration of [11C]acetovanillone was analyzed by HPLC for the chemical form. Whether acetovanillone is converted into the glucuronide conjugate was examined by comparing brain samples treated with or without -glucuronidase. The doses of acetovanillone used in this study ranged from 1.5 g/kg to 100 mg/kg.Results: The radiochemical yield of isolated [11C]acetovanillone was 9 4% (decay corrected to the end of bombardment), and the radiochemical purity was greater than 98%. Brain radioactivity was extremely low at doses of less than 10 mg/kg; low radioactivity was observed in the brain a few minutes after the administration at doses of 25 and 50 mg/kg, and rapidly decreased thereafter. At a dose of 100 mg/kg, [11C]acetovanillone showed the moderate radioactivity uptake followed by gradual reduction. An unknown metabolite was observed in the HPLC chromatogram of brain samples for all doses, and the fraction of the unchanged form increased with increasing the doses of acetovanillone. -Glucuronidase treatment caused the disappearance of the unknown peak and increased the fraction of acetovanillone. This result demonstrated that the metabolite generated in the brain was its glucuronide conjugate. Acetovanillone has been reported to be oxidized to a dimmer (active metabolite) in vitro. In our study, however, the dimer was not observed in the brain at any doses.Conclusions: These data are useful for the evaluation of the efficacy of acetovanillone as a neuroprotective agent.22nd International symposium on radiopharmaceutical science (ISRS

    A (11)C-labeled 1,4-dihydroquinoline derivative as a potential PET tracer for imaging of redox status in mouse brain.

    No full text
    A disturbance in redox balance has been implicated in the pathogenesis of a number of diseases. This study sought to examine the feasibility of imaging brain redox status using a (11)C-labeled dihydroquinoline derivative ([(11)C]DHQ1) for positron emission tomography (PET). The lipophilic PET tracer [(11)C]DHQ1 was rapidly oxidized to its hydrophilic form in mouse brain homogenate. The redox modulators diphenyleneiodonium and apocynin significantly reduced the initial velocity of [(11)C]DHQ1 oxidation, and apocynin also caused concentration-dependent inhibition of the initial velocity. Moreover, [(11)C]DHQ1 readily entered the brain by diffusion after administration and underwent oxidation into the hydrophilic cationic form, which then slowly decreased. By contrast, apocynin treatment inhibited the in vivo oxidation of [(11)C]DHQ1 to the hydrophilic cationic form, leading to a rapid decrease of radioactivity in the brain. Thus, the difference in the [(11)C]DHQ1 kinetics reflects the alteration in redox status caused by apocynin. In conclusion, [(11)C]DHQ1 is a potential PET tracer for imaging of redox status in the living brain.Journal of Cerebral Blood Flow & Metabolism advance online publication, 17 June 2015; doi:10.1038/jcbfm.2015.132

    Imaging of Activity of Multidrug Resistance-Associated Protein 1 in the Lungs

    No full text
    Multidrug resistance-associated protein 1 (MRP1) transports various xenobiotics and metabolites across cell membranes, and the alteration of MRP1 expression is associated with certain lung diseases. This study sought to examine the feasibility of imaging pulmonary MRP1 activity using 6-bromo-7-[11C]methylpurine ([11C]1). A positron emission tomography study with [11C]1 was performed in wild-type, Mrp1 knockout (KO), and P-glycoprotein/breast cancer resistance protein (Pgp/Bcrp) KO mice. Lung radioactivity in wild-type and Mrp1 KO mice reached a maximum level immediately after the administration of [11C]1. Thereafter, radioactivity rapidly decreased in the lungs of wild-type mice, whereas it was mostly retained in the lungs of Mrp1 KO mice. The kinetics in the lungs of Pgp/Bcrp KO mice was quite similar to that of wild-type mice. Analysis of the chemical form confirmed that radioactive compounds in the lungs of Mrp1 KO mice were nearly completely composed of a glutathione conjugate, a MRP1 substrate, 5 minutes after the intravenous administration of [11C]1. The effect of an MRP1 inhibitor, MK571, on the kinetics of [11C]1 was also examined. Treatment with MK571 delayed the elimination of radioactivity from the lungs, compared with control mice. These results suggest that [11C]1 diffuses into the lung tissue after administration and undergoes conversion into the hydrophilic conjugate, which is then specifically expelled by MRP1. In conclusion, [11C]1 allows for the imaging of in vivo MRP1 activity in lungs
    corecore