58 research outputs found

    非白金燃料電池触媒の活性点分布の解明

    Get PDF
    科学研究費助成事業 研究成果報告書:若手研究(B)2016-2017課題番号 : 16K2094

    Invariant nature of substituted element in metal-hexacyanoferrate

    Get PDF
    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of materials. In order to design the highly functional materials, we first have to know the local structure and electronic state around the substituted element. Here, we systematically investigated the local structure and electronic state of the host (Mh) and guest (Mg) transition metals in metal-hexacyanoferrate (M-HCF), Na x (Mh, Mg)[Fe(CN)6] y (1.40 < x < 1.60 and 0.85 < y < 0.90), by means of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) analyses. The EXAFS and XANES analyses revealed that the local structure and electronic state around Mg are essentially the same as those in the pure compound, i.e, Mg-HCF. Such an invariant nature of Mg in M-HCF is in sharp contrast with that in layered oxide, in which the Mg valence changes so that local Mg-O distance (d M-Og) approaches the Mh-O distance (d M-Oh)

    Measurements of ultrafast dissociation in resonant inelastic x-ray scattering of water

    Get PDF
    There has been a discussion on the interpretation of the resonant inelastic x-ray scattering (RIXS) spectra of liquid water in terms of either different structural environments or that core hole dynamics can generate well-resolved dissociative spectral components. We have used RIXS with high resolution in the OH stretch vibration energy part, at extremely high overtones going toward the continuum of full OH bond breakage, to identify the amount of dissociative contributions in the valence band RIXS spectra at different excitation energies. We observe that at low excitation energies, corresponding to population of states with strongly antibonding character, the valence band RIXS spectra have a large contribution from a well-resolved dissociative feature. Instead, at higher excitations, this spectral component diminishes and becomes a weak structure on the high-energy side of one of the spectral peaks related to the 1b1 state from tetrahedral configurations. This result brings both interpretations to be essential for the understanding of RIXS spectra of liquid water

    Electronic states in oxidized Na x CoO 2 as revealed by X-ray absorption spectroscopy coupled with ab initio calculation

    Get PDF
    Layered cobalt oxides are promising cathode materials for sodium ion secondary batteries (SIBs). By combined study of the X-ray absorption spectroscopy (XAS) around the O K-edge and ab initio calculation, we investigated the electronic state of the NaxCoO2 with different oxidization state, i.e, in O3-Na0.91CoO2 (CoO2−0.91) and P2-Na0.66CoO2 (CoO2−0.66). The O K-edge spectra in the pre-edge (529–536 eV) region shows significant change with oxidization of NaxCoO2. In O3-Na0.91CoO2, the spectra shows an intense band (B band) at 531 eV. In P2-Na0.66CoO2, the spectral weight of the B band increases and a new band (A band) appears at 530 eV. These spectral changes are qualitatively reproduced by the calculated partial density of states (pDOSs) of O3-NaCoO2 and P2-Na1/2CoO2. These results indicate that the electrons are partially removed from the O 2p state with oxidization of NaxCoO2

    Strong localization of oxidized Co3+ state in cobalt-hexacyanoferrate

    Get PDF
    Secondary batteries are important energy storage devices for a mobile equipment, an electric car, and a large-scale energy storage. Nevertheless, variation of the local electronic state of the battery materials in the charge (or oxidization) process are still unclear. Here, we investigated the local electronic state of cobalt-hexacyanoferrate (Na x Co[Fe(CN)6]0.9), by means of resonant inelastic X-ray scattering (RIXS) with high energy resolution (~100 meV). The L-edge RIXS is one of the most powerful spectroscopic technique with element- and valence-selectivity. We found that the local electronic state around Co2+ in the partially-charged Na1.1Co2+0.5Co3+0.5[Fe2+(CN)6]0.9 film (x = 1.1) is the same as that of the discharged Na1.6Co2+[Fe2+(CN)6]0.9 film (x = 1.6) within the energy resolution, indicating that the local electronic state around Co2+ is invariant against the partial oxidization. In addition, the local electronic state around the oxidized Co3+ is essentially the same as that of the fully-charged film Co3+[Fe2+(CN)6]0.3[Fe3+(CN)6]0.6 (x = 0.0) film. Such a strong localization of the oxidized Co3+ state is advantageous for the reversibility of the redox process, since the localization reduces extra reaction within the materials and resultant deterioration

    High-energy-resolution XANES of layered oxides for sodium-ion battery

    Get PDF
    The 3d transition metal oxides with layered structures, Na x MO2 (M = Mn, Co), are promising cathode materials for Na-ion secondary batteries. Here, we investigate the electronic structure of the M of four layered oxides (Na0.91CoO2, Na0.66CoO2, Na1.00MnO2, and Na0.54MnO2) by means of high energy resolution fluorescence detected X-ray absorption near-edge structure, which utilizes the 1s core-hole lifetime-broadening reduction. The highly energy-resolved spectroscopy reveals a shoulder structure in the pre-edge regions of the Co K-edge spectra in Na0.91CoO2. The structure is ascribed to the transition to the Co 3d/4p states via slight hybridization with the Na 3s state

    Wetting Induced Oxidation of Pt-based Nano Catalysts Revealed by In Situ High Energy Resolution X-ray Absorption Spectroscopy

    Get PDF
    In situ high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) was used to systematically evaluate interactions of H2O and O2 adsorbed on Pt and Pt3Co nanoparticle catalysts in different particle sizes. The systematic increase in oxidation due to adsorption of different species (H2O adsorption <O2 adsorption <O2 + H2O coadsorption) suggests that cooperative behavior between O2 and H2O adsorptions is responsible for the overpotential induced by hydrated species in fuel cells. From the alloying and particle size effects, it is found that both strength of O2/H2O adsorption and their cooperative effect upon coadsorption are responsible for the specific activity of Pt catalysts

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
    corecore