610 research outputs found

    Spherical harmonic representation of the main geomagnetic field for world charting and investigations of some fundamental problems of physics and geophysics

    Get PDF
    Quiet-day data from MAGSAT were examined for effects which might test the validity of Maxwell's equations. Both external and toroidal fields which might represent a violation of the equations appear to exist, well within the associated errors. The external field might be associated with the ring current, and varies of a time-scale of one day or less. Its orientation is parallel to the geomagnetic dipole. The toriodal field can be confused with an orientation in error (in yaw). It the toroidal field really exists, its can be related to either ionospheric currents, or to toroidal fields in the Earth's core in accordance with Einstein's unified field theory, or to both

    Spherical harmonic representation of the main geomagnetic field for world charting and investigations of some fundamental problems of physics and geophysics

    Get PDF
    The data processing of MAGSAT investigator B test tapes and data tapes, and tapes of selected data on 15 magnetically quiet days is reported. The 1980 World Chart spherical model was compared with the MAGSAT (3/80) and MAGSAT vector data were used in the models. An article on modelling the geomagnetic field using satellite data is included

    The extended Malkus-Robbins dynamo as a perturbed Lorenz system

    Get PDF
    Recent investigations of some self-exciting Faraday-disk homopolar dynamo ([1-4]) have yielded the classic Lorenz equations as a special limit when one of the principal bifurcation parameters is zero. In this paper we focus upon one of those models [3] and illustrate what happens to some of the lowest order unstable periodic orbits as this parameter is increased from zero

    Western Province: text summaries, maps, code lists and village identification

    No full text
    The major purpose of the Papua New Guinea Agricultural Systems Project is to produce information on small holder (subsistence) agriculture at provincial and national levels (Allen et al 1995). Information was collected by field observation, interviews with villagers and reference to published and unpublished documents. Methods are described by Bourke et al. (1993). This Working Paper contains a written summary of the information on the Agricultural Systems in this Province, maps of the location of agriculture systems, a complete listing of all information in the database in coded form, and lists of villages with National Population Census codes, indexed by agricultural systems. This information is available as a map-linked database (GIS) suitable for use on a personal computer in ESRI and MapInfo formats. An Agricultural System is identified when a set of similar agricultural crops and practices occur within a defined area. Six criteria are used to distinguish one system from another: 1. Fallow type (the vegetation which is cleared from a garden site before cultivation). 2. Fallow period (the length of time a garden site is left unused between cultivations). 3. Cultivation intensity (the number of consecutive crops planted before fallow). 4. The staple, or most important, crops. 5. Garden and crop segregation (the extent to which crops are planted in separate gardens; in separate areas within a garden; or are planted sequentially). 6. Soil fertility maintenance techniques (other than natural regrowth fallows). Where one or more of these factors differs significantly and the differences can be mapped, then a separate system is distinguished. Where variation occurs, but is not able to be mapped at 1:500 000 scale because the areas in which the variation occurs are too small or are widely dispersed within the larger system, a subsystem is identified. Subsystems within an Agricultural System are allocated a separate record in the database, identified by the Agricultural System number and a subsystem number. Sago is a widespread staple food in lowland Papua New Guinea. Sago is produced from palms which are not grown in gardens. Most of the criteria above cannot be applied. In this case, systems are differentiated on the basis of the staple crops only. The Papua New Guinea Resource Information System (PNGRIS) is a GIS which contains information on the natural resources of PNG (Bellamy 1986). PNGRIS contains no information on agricultural practices, other than an assessment of land use intensity based on air photograph interpretation by Saunders (1993. The Agricultural Systems Project is designed to provide detailed information on agricultural practices and cropping patterns as part of an upgraded PNGRIS geographical information system. For this reason the Agricultural Systems database contains almost no information on the environmental settings of the systems, except for altitude and slope. The layout of the text descriptions, the database code files and the village lists are similar to PNGRIS formats (Cuddy 1987). The mapping of Agricultural Systems has been carried out on the same map base and scale as PNGRIS (Tactical Pilotage Charts, 1:500 000). Agricultural Systems were mapped within the areas of agricultural land use established by Saunders (1993) from aerial photography. Except where specifically noted, Agricultural Systems boundaries have been mapped without reference to PNGRIS Resource Mapping Unit (RMU) boundaries. Agricultural Systems are defined at the level of the Province (following PNGRIS) but their wider distribution is recognised in the database by cross-referencing systems which cross provincial borders. A preliminary view of the relationships between PNGRIS RMUs and the Agricultural Systems in this Province can be obtained from the listing of villages by Agricultural System, where RMU numbers are appended. Allen, B. J., R. M. Bourke and R. L. Hide 1995. The sustainability of Papua New Guinea agricultural systems: the conceptual background. Global Environmental Change 5(4): 297-312. Bourke, R. M., R. L. Hide, B. J. Allen, R. Grau, G. S. Humphreys and H. C. Brookfield 1993. Mapping agricultural systems in Papua New Guinea. Population Family Health and Development. T. Taufa and C. Bass. University of Papua New Guinea Press, Port Moresby: 205-224. Bellamy, J. A. and J. R. McAlpine 1995. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use Handbook. Commonwealth Scientific and Industrial Research Organisation for the Australian Agency for International Development. PNGRIS Publication No. 6, Canberra. Cuddy, S. M. 1987. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use: Code Files Part 1 Natural Resources. Division of Water and Land Resources, Commonwealth Scientific and Industrial Research Organisation and Land Utilization Section, Department of Primary Industry, Papua New Guinea, Canberra

    Gulf Province: text summaries, maps, code lists and village identification

    Get PDF
    The major purpose of the Papua New Guinea Agricultural Systems Project is to produce information on small holder (subsistence) agriculture at provincial and national levels (Allen et al 1995). Information was collected by field observation, interviews with villagers and reference to published and unpublished documents. Methods are described by Bourke et al. (1993). This Working Paper contains a written summary of the information on the Agricultural Systems in this Province, maps of the location of agriculture systems, a complete listing of all information in the database in coded form, and lists of villages with National Population Census codes, indexed by agricultural systems. This information is available as a map-linked database (GIS) suitable for use on a personal computer in ESRI and MapInfo formats. An Agricultural System is identified when a set of similar agricultural crops and practices occur within a defined area. Six criteria are used to distinguish one system from another: 1. Fallow type (the vegetation which is cleared from a garden site before cultivation). 2. Fallow period (the length of time a garden site is left unused between cultivations). 3. Cultivation intensity (the number of consecutive crops planted before fallow). 4. The staple, or most important, crops. 5. Garden and crop segregation (the extent to which crops are planted in separate gardens; in separate areas within a garden; or are planted sequentially). 6. Soil fertility maintenance techniques (other than natural regrowth fallows). Where one or more of these factors differs significantly and the differences can be mapped, then a separate system is distinguished. Where variation occurs, but is not able to be mapped at 1:500 000 scale because the areas in which the variation occurs are too small or are widely dispersed within the larger system, a subsystem is identified. Subsystems within an Agricultural System are allocated a separate record in the database, identified by the Agricultural System number and a subsystem number. Sago is a widespread staple food in lowland Papua New Guinea. Sago is produced from palms which are not grown in gardens. Most of the criteria above cannot be applied. In this case, systems are differentiated on the basis of the staple crops only. The Papua New Guinea Resource Information System (PNGRIS) is a GIS which contains information on the natural resources of PNG (Bellamy 1986). PNGRIS contains no information on agricultural practices, other than an assessment of land use intensity based on air photograph interpretation by Saunders (1993. The Agricultural Systems Project is designed to provide detailed information on agricultural practices and cropping patterns as part of an upgraded PNGRIS geographical information system. For this reason the Agricultural Systems database contains almost no information on the environmental settings of the systems, except for altitude and slope. The layout of the text descriptions, the database code files and the village lists are similar to PNGRIS formats (Cuddy 1987). The mapping of Agricultural Systems has been carried out on the same map base and scale as PNGRIS (Tactical Pilotage Charts, 1:500 000). Agricultural Systems were mapped within the areas of agricultural land use established by Saunders (1993) from aerial photography. Except where specifically noted, Agricultural Systems boundaries have been mapped without reference to PNGRIS Resource Mapping Unit (RMU) boundaries. Agricultural Systems are defined at the level of the Province (following PNGRIS) but their wider distribution is recognised in the database by cross-referencing systems which cross provincial borders. A preliminary view of the relationships between PNGRIS RMUs and the Agricultural Systems in this Province can be obtained from the listing of villages by Agricultural System, where RMU numbers are appended. Allen, B. J., R. M. Bourke and R. L. Hide 1995. The sustainability of Papua New Guinea agricultural systems: the conceptual background. Global Environmental Change 5(4): 297-312. Bourke, R. M., R. L. Hide, B. J. Allen, R. Grau, G. S. Humphreys and H. C. Brookfield 1993. Mapping agricultural systems in Papua New Guinea. Population Family Health and Development. T. Taufa and C. Bass. University of Papua New Guinea Press, Port Moresby: 205-224. Bellamy, J. A. and J. R. McAlpine 1995. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use Handbook. Commonwealth Scientific and Industrial Research Organisation for the Australian Agency for International Development. PNGRIS Publication No. 6, Canberra. Cuddy, S. M. 1987. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use: Code Files Part 1 Natural Resources. Division of Water and Land Resources, Commonwealth Scientific and Industrial Research Organisation and Land Utilization Section, Department of Primary Industry, Papua New Guinea, Canberra

    Central Province: Text summaries, maps, code lists and village identification

    Get PDF
    The major purpose of the Papua New Guinea Agricultural Systems Project is to produce information on small holder (subsistence) agriculture at provincial and national levels (Allen et al 1995). Information was collected by field observation, interviews with villagers and reference to published and unpublished documents. Methods are described by Bourke et al. (1993). This Working Paper contains a written summary of the information on the Agricultural Systems in this Province, maps of the location of agriculture systems, a complete listing of all information in the database in coded form, and lists of villages with National Population Census codes, indexed by agricultural systems. This information is available as a map-linked database (GIS) suitable for use on a personal computer in ESRI and MapInfo formats. An Agricultural System is identified when a set of similar agricultural crops and practices occur within a defined area. Six criteria are used to distinguish one system from another: 1. Fallow type (the vegetation which is cleared from a garden site before cultivation). 2. Fallow period (the length of time a garden site is left unused between cultivations). 3. Cultivation intensity (the number of consecutive crops planted before fallow). 4. The staple, or most important, crops. 5. Garden and crop segregation (the extent to which crops are planted in separate gardens; in separate areas within a garden; or are planted sequentially). 6. Soil fertility maintenance techniques (other than natural regrowth fallows). Where one or more of these factors differs significantly and the differences can be mapped, then a separate system is distinguished. Where variation occurs, but is not able to be mapped at 1:500 000 scale because the areas in which the variation occurs are too small or are widely dispersed within the larger system, a subsystem is identified. Subsystems within an Agricultural System are allocated a separate record in the database, identified by the Agricultural System number and a subsystem number. Sago is a widespread staple food in lowland Papua New Guinea. Sago is produced from palms which are not grown in gardens. Most of the criteria above cannot be applied. In this case, systems are differentiated on the basis of the staple crops only. The Papua New Guinea Resource Information System (PNGRIS) is a GIS which contains information on the natural resources of PNG (Bellamy 1986). PNGRIS contains no information on agricultural practices, other than an assessment of land use intensity based on air photograph interpretation by Saunders (1993. The Agricultural Systems Project is designed to provide detailed information on agricultural practices and cropping patterns as part of an upgraded PNGRIS geographical information system. For this reason the Agricultural Systems database contains almost no information on the environmental settings of the systems, except for altitude and slope. The layout of the text descriptions, the database code files and the village lists are similar to PNGRIS formats (Cuddy 1987). The mapping of Agricultural Systems has been carried out on the same map base and scale as PNGRIS (Tactical Pilotage Charts, 1:500 000). Agricultural Systems were mapped within the areas of agricultural land use established by Saunders (1993) from aerial photography. Except where specifically noted, Agricultural Systems boundaries have been mapped without reference to PNGRIS Resource Mapping Unit (RMU) boundaries. Agricultural Systems are defined at the level of the Province (following PNGRIS) but their wider distribution is recognised in the database by cross-referencing systems which cross provincial borders. A preliminary view of the relationships between PNGRIS RMUs and the Agricultural Systems in this Province can be obtained from the listing of villages by Agricultural System, where RMU numbers are appended. Allen, B. J., R. M. Bourke and R. L. Hide 1995. The sustainability of Papua New Guinea agricultural systems: the conceptual background. Global Environmental Change 5(4): 297-312. Bourke, R. M., R. L. Hide, B. J. Allen, R. Grau, G. S. Humphreys and H. C. Brookfield 1993. Mapping agricultural systems in Papua New Guinea. Population Family Health and Development. T. Taufa and C. Bass. University of Papua New Guinea Press, Port Moresby: 205-224. Bellamy, J. A. and J. R. McAlpine 1995. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use Handbook. Commonwealth Scientific and Industrial Research Organisation for the Australian Agency for International Development. PNGRIS Publication No. 6, Canberra. Cuddy, S. M. 1987. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use: Code Files Part 1 Natural Resources. Division of Water and Land Resources, Commonwealth Scientific and Industrial Research Organisation and Land Utilization Section, Department of Primary Industry, Papua New Guinea, Canberra

    Spherical harmonic representation of the main geomagnetic field for world charting and investigations of some fundamental problems of physics and geophysics

    Get PDF
    Progress in the harmonic analysis of MAGSAT data is reported. Single-day data sets were subdivided into information on the sunrise side of the Earth and information on the sunset side of the Earth. Data for the main and external fields each demonstrate a clear and consistent systematic difference between the sets of data which was determined to be, due to ionospheric currents which differ from the sunset to the sunrise terminator. A toroidal field was analyzed for and determined to be an apparent toroidal field resulting from electric currents concentrated in the two terminators. Progressive elimination of auroral zone data demonstrates that the information presented does not arise from complications due to Birkeland currents

    West New Britain Province: Text summaries, maps, code lists and village identification

    No full text
    The major purpose of the Papua New Guinea Agricultural Systems Project is to produce information on small holder (subsistence) agriculture at provincial and national levels (Allen et al 1995). Information was collected by field observation, interviews with villagers and reference to published and unpublished documents. Methods are described by Bourke et al. (1993). This Working Paper contains a written summary of the information on the Agricultural Systems in this Province, maps of the location of agriculture systems, a complete listing of all information in the database in coded form, and lists of villages with National Population Census codes, indexed by agricultural systems. This information is available as a map-linked database (GIS) suitable for use on a personal computer in ESRI and MapInfo formats. An Agricultural System is identified when a set of similar agricultural crops and practices occur within a defined area. Six criteria are used to distinguish one system from another: 1. Fallow type (the vegetation which is cleared from a garden site before cultivation). 2. Fallow period (the length of time a garden site is left unused between cultivations). 3. Cultivation intensity (the number of consecutive crops planted before fallow). 4. The staple, or most important, crops. 5. Garden and crop segregation (the extent to which crops are planted in separate gardens; in separate areas within a garden; or are planted sequentially). 6. Soil fertility maintenance techniques (other than natural regrowth fallows). Where one or more of these factors differs significantly and the differences can be mapped, then a separate system is distinguished. Where variation occurs, but is not able to be mapped at 1:500 000 scale because the areas in which the variation occurs are too small or are widely dispersed within the larger system, a subsystem is identified. Subsystems within an Agricultural System are allocated a separate record in the database, identified by the Agricultural System number and a subsystem number. Sago is a widespread staple food in lowland Papua New Guinea. Sago is produced from palms which are not grown in gardens. Most of the criteria above cannot be applied. In this case, systems are differentiated on the basis of the staple crops only. The Papua New Guinea Resource Information System (PNGRIS) is a GIS which contains information on the natural resources of PNG (Bellamy 1986). PNGRIS contains no information on agricultural practices, other than an assessment of land use intensity based on air photograph interpretation by Saunders (1993. The Agricultural Systems Project is designed to provide detailed information on agricultural practices and cropping patterns as part of an upgraded PNGRIS geographical information system. For this reason the Agricultural Systems database contains almost no information on the environmental settings of the systems, except for altitude and slope. The layout of the text descriptions, the database code files and the village lists are similar to PNGRIS formats (Cuddy 1987). The mapping of Agricultural Systems has been carried out on the same map base and scale as PNGRIS (Tactical Pilotage Charts, 1:500 000). Agricultural Systems were mapped within the areas of agricultural land use established by Saunders (1993) from aerial photography. Except where specifically noted, Agricultural Systems boundaries have been mapped without reference to PNGRIS Resource Mapping Unit (RMU) boundaries. Agricultural Systems are defined at the level of the Province (following PNGRIS) but their wider distribution is recognised in the database by cross-referencing systems which cross provincial borders. A preliminary view of the relationships between PNGRIS RMUs and the Agricultural Systems in this Province can be obtained from the listing of villages by Agricultural System, where RMU numbers are appended. Allen, B. J., R. M. Bourke and R. L. Hide 1995. The sustainability of Papua New Guinea agricultural systems: the conceptual background. Global Environmental Change 5(4): 297-312. Bourke, R. M., R. L. Hide, B. J. Allen, R. Grau, G. S. Humphreys and H. C. Brookfield 1993. Mapping agricultural systems in Papua New Guinea. Population Family Health and Development. T. Taufa and C. Bass. University of Papua New Guinea Press, Port Moresby: 205-224. Bellamy, J. A. and J. R. McAlpine 1995. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use Handbook. Commonwealth Scientific and Industrial Research Organisation for the Australian Agency for International Development. PNGRIS Publication No. 6, Canberra. Cuddy, S. M. 1987. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use: Code Files Part 1 Natural Resources. Division of Water and Land Resources, Commonwealth Scientific and Industrial Research Organisation and Land Utilization Section, Department of Primary Industry, Papua New Guinea, Canberra

    Chimbu Province: Text summaries, maps, code lists and village identification

    Get PDF
    The major purpose of the Papua New Guinea Agricultural Systems Project is to produce information on small holder (subsistence) agriculture at provincial and national levels (Allen et al 1995). Information was collected by field observation, interviews with villagers and reference to published and unpublished documents. Methods are described by Bourke et al. (1993). This Working Paper contains a written summary of the information on the Agricultural Systems in this Province, maps of the location of agriculture systems, a complete listing of all information in the database in coded form, and lists of villages with National Population Census codes, indexed by agricultural systems. This information is available as a map-linked database (GIS) suitable for use on a personal computer in ESRI and MapInfo formats. An Agricultural System is identified when a set of similar agricultural crops and practices occur within a defined area. Six criteria are used to distinguish one system from another: 1. Fallow type (the vegetation which is cleared from a garden site before cultivation). 2. Fallow period (the length of time a garden site is left unused between cultivations). 3. Cultivation intensity (the number of consecutive crops planted before fallow). 4. The staple, or most important, crops. 5. Garden and crop segregation (the extent to which crops are planted in separate gardens; in separate areas within a garden; or are planted sequentially). 6. Soil fertility maintenance techniques (other than natural regrowth fallows). Where one or more of these factors differs significantly and the differences can be mapped, then a separate system is distinguished. Where variation occurs, but is not able to be mapped at 1:500 000 scale because the areas in which the variation occurs are too small or are widely dispersed within the larger system, a subsystem is identified. Subsystems within an Agricultural System are allocated a separate record in the database, identified by the Agricultural System number and a subsystem number. Sago is a widespread staple food in lowland Papua New Guinea. Sago is produced from palms which are not grown in gardens. Most of the criteria above cannot be applied. In this case, systems are differentiated on the basis of the staple crops only. The Papua New Guinea Resource Information System (PNGRIS) is a GIS which contains information on the natural resources of PNG (Bellamy 1986). PNGRIS contains no information on agricultural practices, other than an assessment of land use intensity based on air photograph interpretation by Saunders (1993. The Agricultural Systems Project is designed to provide detailed information on agricultural practices and cropping patterns as part of an upgraded PNGRIS geographical information system. For this reason the Agricultural Systems database contains almost no information on the environmental settings of the systems, except for altitude and slope. The layout of the text descriptions, the database code files and the village lists are similar to PNGRIS formats (Cuddy 1987). The mapping of Agricultural Systems has been carried out on the same map base and scale as PNGRIS (Tactical Pilotage Charts, 1:500 000). Agricultural Systems were mapped within the areas of agricultural land use established by Saunders (1993) from aerial photography. Except where specifically noted, Agricultural Systems boundaries have been mapped without reference to PNGRIS Resource Mapping Unit (RMU) boundaries. Agricultural Systems are defined at the level of the Province (following PNGRIS) but their wider distribution is recognised in the database by cross-referencing systems which cross provincial borders. A preliminary view of the relationships between PNGRIS RMUs and the Agricultural Systems in this Province can be obtained from the listing of villages by Agricultural System, where RMU numbers are appended. Allen, B. J., R. M. Bourke and R. L. Hide 1995. The sustainability of Papua New Guinea agricultural systems: the conceptual background. Global Environmental Change 5(4): 297-312. Bourke, R. M., R. L. Hide, B. J. Allen, R. Grau, G. S. Humphreys and H. C. Brookfield 1993. Mapping agricultural systems in Papua New Guinea. Population Family Health and Development. T. Taufa and C. Bass. University of Papua New Guinea Press, Port Moresby: 205-224. Bellamy, J. A. and J. R. McAlpine 1995. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use Handbook. Commonwealth Scientific and Industrial Research Organisation for the Australian Agency for International Development. PNGRIS Publication No. 6, Canberra. Cuddy, S. M. 1987. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use: Code Files Part 1 Natural Resources. Division of Water and Land Resources, Commonwealth Scientific and Industrial Research Organisation and Land Utilization Section, Department of Primary Industry, Papua New Guinea, Canberra

    Northern Province: Text summaries, maps, code lists and village identification

    No full text
    The major purpose of the Papua New Guinea Agricultural Systems Project is to produce information on small holder (subsistence) agriculture at provincial and national levels (Allen et al 1995). Information was collected by field observation, interviews with villagers and reference to published and unpublished documents. Methods are described by Bourke et al. (1993). This Working Paper contains a written summary of the information on the Agricultural Systems in this Province, maps of the location of agriculture systems, a complete listing of all information in the database in coded form, and lists of villages with National Population Census codes, indexed by agricultural systems. This information is available as a map-linked database (GIS) suitable for use on a personal computer in ESRI and MapInfo formats. An Agricultural System is identified when a set of similar agricultural crops and practices occur within a defined area. Six criteria are used to distinguish one system from another: 1. Fallow type (the vegetation which is cleared from a garden site before cultivation). 2. Fallow period (the length of time a garden site is left unused between cultivations). 3. Cultivation intensity (the number of consecutive crops planted before fallow). 4. The staple, or most important, crops. 5. Garden and crop segregation (the extent to which crops are planted in separate gardens; in separate areas within a garden; or are planted sequentially). 6. Soil fertility maintenance techniques (other than natural regrowth fallows). Where one or more of these factors differs significantly and the differences can be mapped, then a separate system is distinguished. Where variation occurs, but is not able to be mapped at 1:500 000 scale because the areas in which the variation occurs are too small or are widely dispersed within the larger system, a subsystem is identified. Subsystems within an Agricultural System are allocated a separate record in the database, identified by the Agricultural System number and a subsystem number. Sago is a widespread staple food in lowland Papua New Guinea. Sago is produced from palms which are not grown in gardens. Most of the criteria above cannot be applied. In this case, systems are differentiated on the basis of the staple crops only. The Papua New Guinea Resource Information System (PNGRIS) is a GIS which contains information on the natural resources of PNG (Bellamy 1986). PNGRIS contains no information on agricultural practices, other than an assessment of land use intensity based on air photograph interpretation by Saunders (1993. The Agricultural Systems Project is designed to provide detailed information on agricultural practices and cropping patterns as part of an upgraded PNGRIS geographical information system. For this reason the Agricultural Systems database contains almost no information on the environmental settings of the systems, except for altitude and slope. The layout of the text descriptions, the database code files and the village lists are similar to PNGRIS formats (Cuddy 1987). The mapping of Agricultural Systems has been carried out on the same map base and scale as PNGRIS (Tactical Pilotage Charts, 1:500 000). Agricultural Systems were mapped within the areas of agricultural land use established by Saunders (1993) from aerial photography. Except where specifically noted, Agricultural Systems boundaries have been mapped without reference to PNGRIS Resource Mapping Unit (RMU) boundaries. Agricultural Systems are defined at the level of the Province (following PNGRIS) but their wider distribution is recognised in the database by cross-referencing systems which cross provincial borders. A preliminary view of the relationships between PNGRIS RMUs and the Agricultural Systems in this Province can be obtained from the listing of villages by Agricultural System, where RMU numbers are appended. Allen, B. J., R. M. Bourke and R. L. Hide 1995. The sustainability of Papua New Guinea agricultural systems: the conceptual background. Global Environmental Change 5(4): 297-312. Bourke, R. M., R. L. Hide, B. J. Allen, R. Grau, G. S. Humphreys and H. C. Brookfield 1993. Mapping agricultural systems in Papua New Guinea. Population Family Health and Development. T. Taufa and C. Bass. University of Papua New Guinea Press, Port Moresby: 205-224. Bellamy, J. A. and J. R. McAlpine 1995. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use Handbook. Commonwealth Scientific and Industrial Research Organisation for the Australian Agency for International Development. PNGRIS Publication No. 6, Canberra. Cuddy, S. M. 1987. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use: Code Files Part 1 Natural Resources. Division of Water and Land Resources, Commonwealth Scientific and Industrial Research Organisation and Land Utilization Section, Department of Primary Industry, Papua New Guinea, Canberra
    • …
    corecore