8 research outputs found

    Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial.

    Full text link
    Background Sparsentan is a novel, non-immunosuppressive, single-molecule, dual endothelin and angiotensin receptor antagonist being examined in an ongoing phase 3 trial in adults with IgA nephropathy. We report the prespecified interim analysis of the primary proteinuria efficacy endpoint, and safety. Methods PROTECT is an international, randomised, double-blind, active-controlled study, being conducted in 134 clinical practice sites in 18 countries. The study examines sparsentan versus irbesartan in adults (aged ≥18 years) with biopsy-proven IgA nephropathy and proteinuria of 1·0 g/day or higher despite maximised renin-angiotensin system inhibitor treatment for at least 12 weeks. Participants were randomly assigned in a 1:1 ratio to receive sparsentan 400 mg once daily or irbesartan 300 mg once daily, stratified by estimated glomerular filtration rate at screening (30 to 1·75 g/day). The primary efficacy endpoint was change from baseline to week 36 in urine protein–creatinine ratio based on a 24-h urine sample, assessed using mixed model repeated measures. Treatment-emergent adverse events (TEAEs) were safety endpoints. All endpoints were examined in all participants who received at least one dose of randomised treatment. The study is ongoing and is registered with ClinicalTrials.gov, NCT03762850. Findings Between Dec 20, 2018, and May 26, 2021, 404 participants were randomly assigned to sparsentan (n=202) or irbesartan (n=202) and received treatment. At week 36, the geometric least squares mean percent change from baseline in urine protein–creatinine ratio was statistically significantly greater in the sparsentan group (–49·8%) than the irbesartan group (–15·1%), resulting in a between-group relative reduction of 41% (least squares mean ratio=0·59; 95% CI 0·51–0·69; p Interpretation Once-daily treatment with sparsentan produced meaningful reduction in proteinuria compared with irbesartan in adults with IgA nephropathy. Safety of sparsentan was similar to irbesartan. Future analyses after completion of the 2-year double-blind period will show whether these beneficial effects translate into a long-term nephroprotective potential of sparsentan.</p

    Diabetes Management in Chronic Kidney Disease: Synopsis of the KDIGO 2022 Clinical Practice Guideline Update.

    Get PDF
    Description: The KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease is an update of the 2020 guideline from Kidney Disease: Improving Global Outcomes (KDIGO). Methods: The KDIGO Work Group updated the guideline, which included reviewing and grading new evidence that was identified and summarized. As in the previous guideline, the Work Group used the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach to appraise evidence and rate the strength of recommendations and expert judgment to develop consensus practice points. New evidence led to updating of recommendations in the chapters Comprehensive Care in Patients With Diabetes and CKD (Chapter 1) and Glucose-Lowering Therapies in Patients With T2D and CKD (Chapter 4). New evidence did not change recommendations in the chapters Glycemic Monitoring and Targets in Patients With Diabetes and CKD (Chapter 2), Lifestyle Interventions in Patients With Diabetes and CKD (Chapter 3), and Approaches to Management of Patients With Diabetes and CKD (Chapter 5). Recommendations: The updated guideline includes 13 recommendations and 52 practice points for clinicians caring for patients with diabetes and chronic kidney disease (CKD). A focus on preserving kidney function and maintaining well-being is recommended using a layered approach to care, starting with a foundation of lifestyle interventions, self-management, and first-line pharmacotherapy (such as sodium–glucose cotransporter-2 inhibitors) demonstrated to improve clinical outcomes. To this are added additional drugs with heart and kidney protection, such as glucagon-like peptide-1 receptor agonists and nonsteroidal mineralocorticoid receptor antagonists, and interventions to control risk factors for CKD progression and cardiovascular events, such as blood pressure, glycemia, and lipids. In light of the emergence of new high-quality evidence, the KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease (1) update follows only 2 years after the original 2020 guideline (2). The overall scope and systematic literature search for the update were unchanged from the original guideline and addressed both type 1 diabetes (T1D) and type 2 diabetes (T2D), all stages of chronic kidney disease (CKD), and patients who had a kidney transplant or those treated with hemodialysis or peritoneal dialysis (2). High-quality evidence on patient care, specifically from randomized controlled trials, was evaluated. This led to revision of recommendations on what constitutes comprehensive care, use of sodium–glucose cotransporter-2 (SGLT2) inhibitors, and use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), as well as the introduction of a new section on use of mineralocorticoid receptor antagonists (MRAs).</p

    Sparsentan versus Irbesartan in Focal Segmental Glomerulosclerosis.

    Full text link
    BACKGROUND An unmet need exists for focal segmental glomerulosclerosis (FSGS) treatment. In an 8-week, phase 2 trial, sparsentan, a dual endothelin–angiotensin receptor antagonist, reduced proteinuria in patients with FSGS. The efficacy and safety of longer-term treatment with sparsentan for FSGS are unknown. METHODS In this phase 3 trial, we enrolled patients with FSGS (without known secondary causes) who were 8 to 75 years of age; patients were randomly assigned to receive sparsentan or irbesartan (active control) for 108 weeks. The surrogate efficacy end point assessed at the prespecified interim analysis at 36 weeks was the FSGS partial remission of proteinuria end point (defined as a urinary protein-to-creatinine ratio of ≤1.5 [with protein and creatinine both measured in grams] and a >40% reduction in the ratio from baseline). The primary efficacy end point was the estimated glomerular filtration rate (eGFR) slope at the time of the final analysis. The change in eGFR from baseline to 4 weeks after the end of treatment (week 112) was a secondary end point. Safety was also evaluated. RESULTS A total of 371 patients underwent randomization: 184 were assigned to receive sparsentan and 187 to receive irbesartan. At 36 weeks, the percentage of patients with partial remission of proteinuria was 42.0% in the sparsentan group and 26.0% in the irbesartan group (P=0.009), a response that was sustained through 108 weeks. At the time of the final analysis at week 108, there were no significant between-group differences in the eGFR slope; the between-group difference in total slope (day 1 to week 108) was 0.3 ml per minute per 1.73 m2 of body-surface area per year (95% confidence interval [CI], −1.7 to 2.4), and the between-group difference in the slope from week 6 to week 108 (i.e., chronic slope) was 0.9 ml per minute per 1.73 m2 per year (95% CI, −1.3 to 3.0). The mean change in eGFR from baseline to week 112 was −10.4 ml per minute per 1.73 m2 with sparsentan and −12.1 ml per minute per 1.73 m2 with irbesartan (difference, 1.8 ml per minute per 1.73 m2; 95% CI, −1.4 to 4.9). Sparsentan and irbesartan had similar safety profiles, and the frequency of adverse events was similar in the two groups. CONCLUSIONS Among patients with FSGS, there were no significant between-group differences in eGFR slope at 108 weeks, despite a greater reduction in proteinuria with sparsentan than with irbesartan. (Funded by Travere Therapeutics; DUPLEX ClinicalTrials.gov number, NCT03493685. opens in new tab.)</p

    Conversion of Urine Protein–Creatinine Ratio or Urine Dipstick Protein to Urine Albumin–Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis

    Full text link
    Background: Although measuring albuminuria is the preferred method for defining and staging chronic kidney disease (CKD), total urine protein or dipstick protein is often measured instead.Objective: To develop equations for converting urine protein creatinine ratio (PCR) and dipstick protein to urine albumin creatinine ratio (ACR) and to test their diagnostic accuracy in CKD screening and staging.Design: Individual participant–based meta-analysis.Setting: 12 research and 21 clinical cohorts.Participants: 919 383 adults with same-day measures of ACR and PCR or dipstick protein.Measurements: Equations to convert urine PCR and dipstick protein to ACR were developed and tested for purposes of CKD screening (ACR ≥30 mg/g) and staging (stage A2: ACR of 30 to 299 mg/g; stage A3: ACR ≥300 mg/g).Results: Median ACR was 14 mg/g (25th to 75th percentile of cohorts, 5 to 25 mg/g). The association between PCR and ACR was inconsistent for PCR values less than 50 mg/g. For higher PCR values, the PCR conversion equations demonstrated moderate sensitivity (91%, 75%, and 87%) and specificity (87%, 89%, and 98%) for screening (ACR >30 mg/g) and classification into stages A2 and A3, respectively. Urine dipstick categories of trace or greater, trace to +, and ++ for screening for ACR values greater than 30 mg/g and classification into stages A2 and A3, respectively, had moderate sensitivity (62%, 36%, and 78%) and high specificity (88%, 88%, and 98%). For individual risk prediction, the estimated 2-year 4-variable kidney failure risk equation using predicted ACR from PCR had discrimination similar to that of using observed ACR.Limitation: Diverse methods of ACR and PCR quantification were used; measurements were not always performed in the same urine sample.Conclusion: Urine ACR is the preferred measure of albuminuria; however, if ACR is not available, predicted ACR from PCR or urine dipstick protein may help in CKD screening, staging, and prognosis.</div

    Development and Validation of Prediction Models of Adverse Kidney Outcomes in the Population With and Without Diabetes.

    Full text link
    ObjectiveTo predict adverse kidney outcomes for use in optimizing medical management and clinical trial design.Research design and methodsIn this meta-analysis of individual participant data, 43 cohorts (N = 1,621,817) from research studies, electronic medical records, and clinical trials with global representation were separated into development and validation cohorts. Models were developed and validated within strata of diabetes mellitus (presence or absence) and estimated glomerular filtration rate (eGFR; ≥60 or ResultsThere were 17,399 and 24,591 events in development and validation cohorts, respectively. Models predicting ≥40% eGFR decline or kidney failure incorporated age, sex, eGFR, albuminuria, systolic blood pressure, antihypertensive medication use, history of heart failure, coronary heart disease, atrial fibrillation, smoking status, and BMI, and, in those with diabetes, hemoglobin A1c, insulin use, and oral diabetes medication use. The median C-statistic was 0.774 (interquartile range [IQR] = 0.753, 0.782) in the diabetes and higher-eGFR validation cohorts; 0.769 (IQR = 0.758, 0.808) in the diabetes and lower-eGFR validation cohorts; 0.740 (IQR = 0.717, 0.763) in the no diabetes and higher-eGFR validation cohorts; and 0.750 (IQR = 0.731, 0.785) in the no diabetes and lower-eGFR validation cohorts. Incorporating the previous 2-year eGFR slope minimally improved model performance, and then only in the higher-eGFR cohorts.ConclusionsNovel prediction equations for a decline of ≥40% in eGFR can be applied successfully for use in the general population in persons with and without diabetes with higher or lower eGFR

    Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies

    Full text link
    Background: Change in albuminuria as a surrogate endpoint for progression of chronic kidney disease is strongly supported by biological plausibility, but empirical evidence to support its validity in epidemiological studies is lacking. We aimed to assess the consistency of the association between change in albuminuria and risk of end-stage kidney disease in a large individual participant-level meta-analysis of observational studies. Methods: In this meta-analysis, we collected individual-level data from eligible cohorts in the Chronic Kidney Disease Prognosis Consortium (CKD-PC) with data on serum creatinine and change in albuminuria and more than 50 events on outcomes of interest. Cohort data were eligible if participants were aged 18 years or older, they had a repeated measure of albuminuria during an elapsed period of 8 months to 4 years, subsequent end-stage kidney disease or mortality follow-up data, and the cohort was active during this consortium phase. We extracted participant-level data and quantified percentage change in albuminuria, measured as change in urine albumin-to-creatinine ratio (ACR) or urine protein-to-creatinine ratio (PCR), during baseline periods of 1, 2, and 3 years. Our primary outcome of interest was development of end-stage kidney disease after a baseline period of 2 years. We defined an end-stage kidney disease event as initiation of kidney replacement therapy. We quantified associations of percentage change in albuminuria with subsequent end-stage kidney disease using Cox regression in each cohort, followed by random-effects meta-analysis. We further adjusted for regression dilution to account for imprecision in the estimation of albuminuria at the participant level. We did multiple subgroup analyses, and also repeated our analyses using participant-level data from 14 clinical trials, including nine clinical trials not in CKD-PC. Findings: Between July, 2015, and June, 2018, we transferred and analysed data from 28 cohorts in the CKD-PC, which included 693 816 individuals (557 583 [80%] with diabetes). Data for 675 904 individuals and 7461 end-stage kidney disease events were available for our primary outcome analysis. Change in ACR was consistently associated with subsequent risk of end-stage kidney disease. The adjusted hazard ratio (HR) for end-stage kidney disease after a 30% decrease in ACR during a baseline period of 2 years was 0·83 (95% CI 0·74–0·94), decreasing to 0·78 (0·66–0·92) after further adjustment for regression dilution. Adjusted HRs were fairly consistent across cohorts and subgroups (ie, estimated glomerular filtration rate, diabetes, and sex), but the association was somewhat stronger among participants with higher baseline ACR than among those with lower baseline ACR (pinteraction<0·0001). In individuals with baseline ACR of 300 mg/g or higher, a 30% decrease in ACR over 2 years was estimated to confer a more than 1% absolute reduction in 10-year risk of end-stage kidney disease, even at early stages of chronic kidney disease. Results were generally similar when we used change in PCR and when study populations from clinical trials were assessed. Interpretation: Change in albuminuria was consistently associated with subsequent risk of end-stage kidney disease across a range of cohorts, lending support to the use of change in albuminuria as a surrogate endpoint for end-stage kidney disease in clinical trials of progression of chronic kidney disease in the setting of increased albuminuria

    Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium

    No full text
    OBJECTIVE:To evaluate the associations between adiposity measures (body mass index, waist circumference, and waist-to-height ratio) with decline in glomerular filtration rate (GFR) and with all cause mortality. DESIGN:Individual participant data meta-analysis. SETTING:Cohorts from 40 countries with data collected between 1970 and 2017. PARTICIPANTS:Adults in 39 general population cohorts (n=5 459 014), of which 21 (n=594 496) had data on waist circumference; six cohorts with high cardiovascular risk (n=84 417); and 18 cohorts with chronic kidney disease (n=91 607). MAIN OUTCOME MEASURES:GFR decline (estimated GFR decline ≥40%, initiation of kidney replacement therapy or estimated GFR <10 mL/min/1.73 m2) and all cause mortality. RESULTS:Over a mean follow-up of eight years, 246 607 (5.6%) individuals in the general population cohorts had GFR decline (18 118 (0.4%) end stage kidney disease events) and 782 329 (14.7%) died. Adjusting for age, sex, race, and current smoking, the hazard ratios for GFR decline comparing body mass indices 30, 35, and 40 with body mass index 25 were 1.18 (95% confidence interval 1.09 to 1.27), 1.69 (1.51 to 1.89), and 2.02 (1.80 to 2.27), respectively. Results were similar in all subgroups of estimated GFR. Associations weakened after adjustment for additional comorbidities, with respective hazard ratios of 1.03 (0.95 to 1.11), 1.28 (1.14 to 1.44), and 1.46 (1.28 to 1.67). The association between body mass index and death was J shaped, with the lowest risk at body mass index of 25. In the cohorts with high cardiovascular risk and chronic kidney disease (mean follow-up of six and four years, respectively), risk associations between higher body mass index and GFR decline were weaker than in the general population, and the association between body mass index and death was also J shaped, with the lowest risk between body mass index 25 and 30. In all cohort types, associations between higher waist circumference and higher waist-to-height ratio with GFR decline were similar to that of body mass index; however, increased risk of death was not associated with lower waist circumference or waist-to-height ratio, as was seen with body mass index. CONCLUSIONS:Elevated body mass index, waist circumference, and waist-to-height ratio are independent risk factors for GFR decline and death in individuals who have normal or reduced levels of estimated GFR

    Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial

    No full text
    Background Sparsentan, a novel, non-immunosuppressive, single-molecule, dual endothelin angiotensin receptor antagonist, significantly reduced proteinuria versus irbesartan, an angiotensin II receptor blocker, at 36 weeks (primary endpoint) in patients with immunoglobulin A nephropathy in the phase 3 PROTECT trial's previously reported interim analysis. Here, we report kidney function and outcomes over 110 weeks from the double-blind final analysis. Methods PROTECT, a double-blind, randomised, active-controlled, phase 3 study, was done across 134 clinical practice sites in 18 countries throughout the Americas, Asia, and Europe. Patients aged 18 years or older with biopsy-proven primary IgA nephropathy and proteinuria of at least 1·0 g per day despite maximised renin–angiotensin system inhibition for at least 12 weeks were randomly assigned (1:1) to receive sparsentan (target dose 400 mg oral sparsentan once daily) or irbesartan (target dose 300 mg oral irbesartan once daily) based on a permuted-block randomisation method. The primary endpoint was proteinuria change between treatment groups at 36 weeks. Secondary endpoints included rate of change (slope) of the estimated glomerular filtration rate (eGFR), changes in proteinuria, a composite of kidney failure (confirmed 40% eGFR reduction, end-stage kidney disease, or all-cause mortality), and safety and tolerability up to 110 weeks from randomisation. Secondary efficacy outcomes were assessed in the full analysis set and safety was assessed in the safety set, both of which were defined as all patients who were randomly assigned and received at least one dose of randomly assigned study drug. This trial is registered with ClinicalTrials.gov, NCT03762850. Findings Between Dec 20, 2018, and May 26, 2021, 203 patients were randomly assigned to the sparsentan group and 203 to the irbesartan group. One patient from each group did not receive the study drug and was excluded from the efficacy and safety analyses (282 [70%] of 404 included patients were male and 272 [67%] were White) . Patients in the sparsentan group had a slower rate of eGFR decline than those in the irbesartan group. eGFR chronic 2-year slope (weeks 6–110) was −2·7 mL/min per 1·73 m2 per year versus −3·8 mL/min per 1·73 m2 per year (difference 1·1 mL/min per 1·73 m2 per year, 95% CI 0·1 to 2·1; p=0·037); total 2-year slope (day 1–week 110) was −2·9 mL/min per 1·73 m2 per year versus −3·9 mL/min per 1·73 m2 per year (difference 1·0 mL/min per 1·73 m2 per year, 95% CI −0·03 to 1·94; p=0·058). The significant reduction in proteinuria at 36 weeks with sparsentan was maintained throughout the study period; at 110 weeks, proteinuria, as determined by the change from baseline in urine protein-to-creatinine ratio, was 40% lower in the sparsentan group than in the irbesartan group (−42·8%, 95% CI −49·8 to −35·0, with sparsentan versus −4·4%, −15·8 to 8·7, with irbesartan; geometric least-squares mean ratio 0·60, 95% CI 0·50 to 0·72). The composite kidney failure endpoint was reached by 18 (9%) of 202 patients in the sparsentan group versus 26 (13%) of 202 patients in the irbesartan group (relative risk 0·7, 95% CI 0·4 to 1·2). Treatment-emergent adverse events were well balanced between sparsentan and irbesartan, with no new safety signals. Interpretation Over 110 weeks, treatment with sparsentan versus maximally titrated irbesartan in patients with IgA nephropathy resulted in significant reductions in proteinuria and preservation of kidney function.</p
    corecore