455 research outputs found
Hybrid modeling of relativistic underdense plasma photocathode injectors
The dynamics of laser ionization-based electron injection in the recently introduced plasma photocathode concept is analyzed analytically and with particle-in-cell simulations. The influence of the initial few-cycle laser pulse that liberates electrons through background gas ionization in a plasma wakefield accelerator on the final electron phase space is described through the use of Ammosov-Deloine-Krainov theory as well as nonadiabatic Yudin-Ivanov (YI) ionization theory and subsequent downstream dynamics in the combined laser and plasma wave fields. The photoelectrons are tracked by solving their relativistic equations of motion. They experience the analytically described transient laser field and the simulation-derived plasma wakefields. It is shown that the minimum normalized emittance of fs-scale electron bunches released in mulit-GV/m-scale plasma wakefields is of the order of 10-2 mm mrad. Such unprecedented values, combined with the dramatically increased controllability of electron bunch production, pave the way for highly compact yet ultrahigh quality plasma-based electron accelerators and light source applications
The Cosmically Depressed: Life, Sociology and Identity of Voids
We review and discuss aspects of Cosmic Voids that form the background for
our Void Galaxy Survey (see accompanying paper by Stanonik et al.). Following a
sketch of the general characteristics of void formation and evolution, we
describe the influence of the environment on their development and structure
and the characteristic hierarchical buildup of the cosmic void population. In
order to be able to study the resulting tenuous void substructure and the
galaxies populating the interior of voids, we subsequently set out to describe
our parameter free tessellation-based watershed void finding technique. It
allows us to trace the outline, shape and size of voids in galaxy redshift
surveys. The application of this technique enables us to find galaxies in the
deepest troughs of the cosmic galaxy distribution, and has formed the basis of
our void galaxy program.Comment: 10 pages, 4 figures, proceedings "Galaxies in Isolation" (May 2009,
Granada, Spain), eds. L. Verdes-Montenegro, ASP (this is a colour, extended
and combined version; accompanying paper to Stanonik et al., arXiv:0909.2869,
in same volume
Parametric tolerance study of Trojan Horse plasma wakefield acceleration scheme
A promising scheme for plasma wakefield acceleration is the hybrid plasma acceleration mechanism, which is experimentally connected to world-wide programs at various accelerator facilities. This scheme may lead to extremely high quality electron bunches, which can be used to drive ultrabright light sources such as free electron lasers. The big challenge for plasma acceleration is to produce electron bunches with high quality in terms of low emittance, energy spread and high brightness. To overcome this challenge, the Trojan Horse scheme [1,2,3,4,5] is used for production of designer electron beams. This work explores the Trojan Horse mechanism in a parametric study by variation of the injector laser pulse by intensity a0, spot size w0 and relative spatiotemporal synchronization and alignment. These parameters define output electron witness beam parameters and its quality. This sensitivity study shows a high robustness of the scheme, which is promising for a wider key prospect of the approach, namely the development of compact plasma accelerators to produce electron beams with unprecedented emittance and brightness in order to power free-electron lasers
Plasma accelerator driven coherent spontaneous emission
Plasma accelerators [1] are a potentially important source of high energy, low emittance electron beams with high peak currents and generated within a relatively short distance. While novel plasma photocathodes [2] may offer improvement to the normalised emittance and brightness of electron beams compared to Radio Frequency-driven accelerators, a challenge is the energy spread and chirp of the beams, which can make FEL operation impossible. In this paper it is shown that such an energy-chirped beam, with a dynamically evolving current profile due to ballistic bunching, can generate significant coherent radiation output via the process of Coherent Spontaneous Emission (CSE) [3]. While this CSE is seen to cause some FEL-induced electron bunching at the radiation wavelength, the dynamic evolution of the energy chirped pulse dampens out any high-gain FEL interaction
Bright betatron x-ray radiation from a laser-driven-clustering gas target
Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications
Tunable Electron Multibunch Production in Plasma Wakefield Accelerators
Synchronized, independently tunable and focused J-class laser pulses are
used to release multiple electron populations via photo-ionization inside an
electron-beam driven plasma wave. By varying the laser foci in the laboratory
frame and the position of the underdense photocathodes in the co-moving frame,
the delays between the produced bunches and their energies are adjusted. The
resulting multibunches have ultra-high quality and brightness, allowing for
hitherto impossible bunch configurations such as spatially overlapping bunch
populations with strictly separated energies, which opens up a new regime for
light sources such as free-electron-lasers
Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality
The EuPRAXIA project aims at designing the world's first accelerator based on advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously have high charge, low emittance and low energy spread, which are required for applications by future user communities. Meeting this challenging objective will only be possible through dedicated effort. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European research institutes. This enables selection of the most appropriate methods for solving each particular problem. The specific challenge of generating, extracting and transporting high charge beams, while maintaining the high quality needed for user applications, are being tackled using innovative approaches. This article highlights preliminary results obtained by the EuPRAXIA collaboration, which also exhibit the required laser and plasma parameters
Alpha, Betti and the Megaparsec Universe: on the Topology of the Cosmic Web
We study the topology of the Megaparsec Cosmic Web in terms of the
scale-dependent Betti numbers, which formalize the topological information
content of the cosmic mass distribution. While the Betti numbers do not fully
quantify topology, they extend the information beyond conventional cosmological
studies of topology in terms of genus and Euler characteristic. The richer
information content of Betti numbers goes along the availability of fast
algorithms to compute them.
For continuous density fields, we determine the scale-dependence of Betti
numbers by invoking the cosmologically familiar filtration of sublevel or
superlevel sets defined by density thresholds. For the discrete galaxy
distribution, however, the analysis is based on the alpha shapes of the
particles. These simplicial complexes constitute an ordered sequence of nested
subsets of the Delaunay tessellation, a filtration defined by the scale
parameter, . As they are homotopy equivalent to the sublevel sets of
the distance field, they are an excellent tool for assessing the topological
structure of a discrete point distribution. In order to develop an intuitive
understanding for the behavior of Betti numbers as a function of , and
their relation to the morphological patterns in the Cosmic Web, we first study
them within the context of simple heuristic Voronoi clustering models.
Subsequently, we address the topology of structures emerging in the standard
LCDM scenario and in cosmological scenarios with alternative dark energy
content. The evolution and scale-dependence of the Betti numbers is shown to
reflect the hierarchical evolution of the Cosmic Web and yields a promising
measure of cosmological parameters. We also discuss the expected Betti numbers
as a function of the density threshold for superlevel sets of a Gaussian random
field.Comment: 42 pages, 14 figure
Sub-femtosecond electron bunches in laser wakefield acceleration via injection suppression with a magnetic field
It is shown that electron injection into a laser-driven plasma bubble can be manipulated by applying an external magnetic field in the presence of a plasma density gradient. The down-ramp of the density-tailored plasma locally reduces the plasma wave phase velocity, which triggers injection. The longitudinal magnetic field dynamically induces an expanding hole in the electron density distribution at the rear of the wake bubble, which reduces the peak electron velocity in its vicinity. Electron injection is suppressed when the electron velocity drops below the phase velocity, which depends on the size of the density hole. This enables the start and end of electron injection to be independently controlled, which allows generation of sub-femtosecond electron bunches with peak currents of a few kilo-Ampere, for an applied magnetic field of ∼ 10 Tesla
- …